TRANSLATION

INTRODUCTION TO CYBERNETICS
By

V’. M . Glu.hkﬁ\r

FOREIGN TECHNOLOGY

; DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE
!
: CL_Ld ;‘Iv.'.l-'_.‘
R SRR

- T = r-—

N

- Best
Available
Copy

— SR By s

e

L ——

e Redli. ae.

This translation was made to provide the users with the basic essentials of

the original document in the shortest possible time. It has not been edited
to refine or improve the grammatical accuracy, syntax or technical terminology.

e ST e

-

FID-TT- 65-942/1+:

UNEDITED ROUGH DRAFT TRANSLATION

: INTRODUCTION TO CYBERNETICS
BY: V. M. Glushkov

English pages: 469

TM5000976
THIS TRANSLATION (S A REKDITION OF THE ORISI-
MAL FORRISN TEXT WITHOUT ANY ANALYTICAL OR
. EDITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED BY:
ABYOCATED OR IMPLIED ARE THOSE OP THE SOURCE
AND 90 HOT NECESSARILY REPLECT THE POSITION TRANSLATION DIVISION
OR OPIMION OF THE PORRISN TECHWOLOSY DI POREIN TECHNOLOGY DIVISION
VISION, VP-APS, ONIO.
®
FTD-TT-_65-942/1+2 Date_17 reb. 19 6
AFLC-WPAFB-MAR 66 72 S

-— W — -, o m- A e e e e e~

Akademiya Nauk Ukrainskoy SSR

Nauchnyy Sovet Po Kibernetike

V. M. Glushkov

VVEDENTYE V KIBERNETIKU

Izdatel'stvo Akademiya Nauk Ukrainskoy SSR
Kiev - 1964

324 pages

FTD-TT-65-942/1+2

I e

TABLE OF CONTENTS
Fore"ord [] ® L] L] L] L] [] [] L] [] [] L] L] L] L] L] ° L] ® [] []] [] L] L] []

Chapter 1. Abstract Theory of Automata « ¢« . . .

1. Alphabetic Operators and Algorithms
2. Normal Algorithms. B @ ¢« o
3. The Kolmogorov-Uspenskiy Algorithmic Diagram

4, Other Theoretical Algorithmic Systems.
5. The Concept of Algorithmically Insoluble Problems

Chapter 2. Boolean Functions and Prorositional Calculus . .

§1. Concept of Boolean Functions « « « ¢« « o o o« o & &
2. Boolean Algebra. « o« s« ¢ ¢ ¢ ¢ o ¢ o o o o g
3. The Concept of Complete Sets of Boolean Operations

. Application of Boolean Algebra in the Theory of
Combination Circuits . . . R - S
§5. The Concept of Propositional CalculuS. « « « o o &

Chapter 3. Theory of Automata . . « ¢« ¢ o ¢ ¢ ¢ ¢ ¢ ¢ o &

1. Abstract Automata and Automation Representations
2. Events and Representation of Events in Automata
2. Analysis of Finite Automata . . 0 0 > g
Abstract Synthesis of Finite Automata 5 & le
5 Minimization of Abstract Automata
6. Structural Synthesis of Finite Automata. . . .

Chapter 4. Self-Organizing SystemS. « « « o o o ¢ o o o o &

§1. Concept of Self-Alteration and Self-Organization
1n Aut omata. L] [[] [] [] L J [] L] [] L] [] []] [] [] L] L]]
§2. Some Auxiliary Information From Probability Theory
§3. A Quantitative Measure of Self-Organization and
Self -Improvement in Automata . « « ¢« « ¢ ¢« . &
gh. Automata With Random Transitions . « « « + . &
5. The Problem of Pattern Recognition Training. .
§6. Theory of Training of Discrete a-Perceptrons .
§7. Operation of the Discrete a-Perceptrons in the
Self-Learning Regime . « ¢« ¢« ¢ ¢ ¢ ¢ o ¢ o o o s
§8. Logical Classification Systems and Conditional
Probabillity Machines . . . 5
§9. Self-Organization and Self-Adaptation. Methods of
Solution of Complex Variational Problems

Chapter 5. Electronic Digital Machines and Programming . .
1. The Universal Program Automaton « « « « .« &

FTD-TT-65-942/1+2

25
4o
49
57

68

68
81

99

110
127
145

145
158
166

173
183
192

206

206
217

231
o241
254
272
201
303
322
341
341

-;MH

2. Structure of the Modern Universal Program Automata . 358

3. The Concept of Programming . . . WRTERIE
The Universal Algorithmic Language Algol-60 s 4+ » SBD

5. Examples of Programming Using Algol-60 405

Chapter 6. Predicate Calculus and the Problem of Automation
of the Scientific Creative Processes . . « . . « . U421

1., Basic Concepts of Predicate Calculus « . o U421 «
2. Formal Arithmetic and the Gode Theorem 440 /
3. Concept of Automation of Proofs and Construction of
Deductive Theories . . « « o« o « o o s o ¢ o s o« o« o« U453
References. L] (] [] [] [] [] [] [] [] [] [[] [] [] [] [] L] [] [] [L] [[] [] [] 470 .
[]
[
®
F]
- il -
FTD-TT-65-492/1+2

————
e < P, > S B - » -
z . .m_ - s o " =

s ~ ‘,.‘ -

This book contains the collected and unified material necessary
for the presentation of such branches of modern cybernetics as the
theory of electronic diglital computers, theory of discrete automata,
theory of discrete self-organizing systems, automation of thought
processes, theory of image recognition, etc. Discussions are given
of the fundamentals of the theory of boolean functions, algorithm
theory, principles of the design of electronlic digital computers and
universal algorlithmical languages, fundamentals of perceptron theory,
some theoretical questions of the theory of self-organizing systems.

Many fundamental results in mathematical logic and algorithm
theory are presented in summary form, without detailed proofs, and
in some cases without any proof.

The book 1s intended for a broad audience of mathematiclans and
sclentists of many specialties who wish to acquaint themselves with
the problems of modern cybernetics.

FID-TT-65-042/1+2

T T R e R R —

Ty~ —
- —~

e . =y T

FOREWORD '
The objective of the present book is to acquaint the reader with
several new scientific directions which constitute the basis of cyber-
netics in its modern concept. In the most general framework all these
trends can be subdivided into two major groups — the general theory of

information conversion, and the theory and principles of the design of :

various kinds of information converters. However, the material which

can be associated with these major trends is so extensive that it
cousd hardly be presented even in summary form in a single book.
Therefore it has been necessary to make a selection of the materlal in
accordance with some general principles.

The material for the present book has been selected 1n accordance
with two basic principles. The first principle 1s the requirement for
a sufficiently rigorous formulation of the materlal to permit present- ¥
ing it in the form of a mathematic theory (although with the bent in
the direction of practical simulation which is characteristlic of cy-
bernetics). The second principle is that the author 1limits himself, as
a rule, to the digital methods of representing information and the dig-
ital conversion of information.

As a result of the selectlon, the book contains the following

basic sections: algorithm theory (including programming for general

purpose electronic digital computers and universal algorithmic lan-

guages for programming), theory of discrete automata (including the »

theory of boolean functions and the concept of the principles of the
design of general-purpose electronic digltal computers), theory of

-2 -
FTD-TT-65-942/1+2 |
:

B - SRR e e ——— g

discrete self-organizing systems (1nc1ud1ng elements of the theory of

optimal decisions) and, finally, mathematical logic (propositional cal-

culus, restricted predicate calculus and formal arithmetic), consid-
ered as a basls for the automation of the process of the design of
design of deductive (based on a particular system of axioms) theories.

The degree of detall of the presentation of the material is deter-
mined first of all by the degree of 1ts novelty. The newer branches,
related to cybernetics 1itself, are discussed in greater detall, the
fundamental theorems are supplied with quite detalled proofs. At the
same time, in such branches as abstract algorithm theory and mathemat-
ical logic, which have developed within the framework of traditional
mathematics, the material 1s presented more briefly, proofs, as a rule,
are omitted.

The author has attempted, however, to give an understanding of
the basic ideas and methods which are used to establish the validity
of such fundamental, from the point of vies of mathematic loglics, prop-
ositions as the Godel theorem on the incompleteness of arithmetic or
the theorems which establish the algorithmic insoliubility of particu-
lar problems.

The book does not pretend to replace specialized mcnographs on
the individual sections which are included here. Its primary intention
is to aid a wide audience of mathematiclans and engineers to master
that minimum of knowledge which is necessary for work in the field of
the theoretical problems of modern "digital" cybernetics. It is well
known that the existence of detalled monographs on a particular theme
does not always make 1t possible for readers without specialized pre-
paration to become acqualnted with the subject. Convincing proof of
this 1s the fact that in spite of the exlistence of srecialized mono-
graphs, such a theorem as that of Godel mentioned above, which 1s of

« 5

FTDTT «65<942/142

——rre YT TR

fundamental importance for all of mathematics, remains unknown to
large numbers of mathematiclans except for hearsay.

As for the present book, i1t presents to the reader (but only in
one chapter, the fourth), the knowledge of only those elements of math-
ematlical analysis and probability theory which are known to practical-
ly every engineer, without mentioning mathematicians. The less wldely
known mathematical results necessary for the understanding of the main
content of the book are included as supplementary material. An example
of this sort of supplementary material might be the series of proposi-
tions of probability theory presented in Chapter 4, §2.

In case the reader wishes to extend hils knowledge in a particular
area or become acqualnted with the detalled proofs of those proposi-
tions which, although included in the book, are not proved in detail,
we shall make a summary of the contents of the book with an indication
of the specialized monographs (in Russian) pertaining to the individu-
al sections. Unfortunately, this sort of monograph cannot be found per-
taining to all the sections of the book.

The first chapter presents a description of the basic theoretical
universal algorithmic systems (normal Markov algorithms, the Kolmogorov-
Uspenskly algorithmic system, recursive functions, the Post algorithms,
and the Turing machine). Also presented are the basic principles of
the proofs of the algorithmic insolubility of certain very simple mass
problems.

At the present time there is no unifying monograph available on
the intire theory of algorithms as a whole. Moreover, not all the ques-
tions mentloned above are covered in any detall in the monographic 1it-
erature. Among the principal moriographs on the individual algorithmic
systems we might mention the followlng: on the theory of normal algo-
rithms, Theory of Algorithms, A.A. Markov {Ref 53); on the theory of

-4 -

. " ST rTmm—TTT bt = >
TR Sy S T s_(. = m
. " s -

W

recursive functions and Turing machines, Introduction to Metamathemat-

ics, S.C. Kleene (Ref 42) and Course on Computable Functions, V.A. Us-

penskiy (Ref 76).

The theory of boolean functions and its applications to the thec-
ry of discrete automata circults are presented in the second chapter.
These questions are discussed in greater detail in the mor.ograph of

V.M. Glushkov, Synthesis of Digital Automata (Ref 26).

In addition, the second chapter covers the fundamentals of propo-

sitional theory. More detall on propositional calculus can be found,

for example, i1n the monograph of P.S. Novikova, Elements of Mathemati-

cal Logic (Ref 61).

The third chapter 1s devoted to the abstract and structural theo-
ry of discrete (finite) automata. The questions relating to this sub-
Ject are considered in more detail in the monograph of Glushkov
mentioned above. These questions are covered from somewhat diffecrent
positions in the monograph of N.Ye. Kobrinskiy and V.A. Trakhtenbrot,
Introduction to the Theory of Finite Automata (Ref 47).

The fundamentals of the theory of discrete self-organizing sys-
tems are presented in the fourth chapter. A definition 1s given of the
quantitative measure of self-organization and self-learning, a study
i1s made of the behaviour of random automata and automata operating in
conditlons of random external inputs. Speclal attention 1s devoted to
the problem of the recognition of images and the theory of one class
of devices (the so-called a-perceptron) intended for the resolution of
thic problem. Some questions of the simulation of conditioned reflexes
are conslildered, and also questions of the teaching of meanling recogni-
tion and the generation of new concepts. At the end of the chapter, in
connection with the idea of self-adjustment and extremal regulation,

descrptions are given of several general methods for the solution of

extremal problems (the method of steepest descent and 1its refinement,
the simplex method of solution of the problems of linear programming
and the so-=called method of sequential analysis of variants for the
solution of the problems of dynamic programming).
So far no unifying monograph 1s avialable on the material of the
fourth chapter. Moreover, almost all the questlons dlscussed in this
chapter (with the exception of the method of steepest descent and the 4
simplex method) have not yet been covered in the monographic litera-
ture. Several questions allied with those considered in this chapter

(but not completely identical to them) are covered in Neurodynamics,

F. Rosenblatt which has not yet been translated into Russilan. A large
number of monographs 1s devoted to the methods of solution of experi-
mental problems (with the exception of the method of sequential analy-
sis of variants). However, we shall not list them here since these
questions have no direct relation to the primary theme of the present
book.

The fifth chapter covers the basic principles of the design of
the general-purpose electronic digital computers and the programming v
for these machines. So many monographs have been devoted to this ques-
tion that it would be very difficult to list them all. In particular,
we might cite on the subject of programming the monograph of B.V.
Gnedenko, V.S. Korolyuk and Ye.L. Yushchenko, Elements of Programming

(Ref 31). As for the principles of computer design, in splte of the
exlstence of many good specialized monographs on this question, a de-
talled presentation of the material in the framework we need does not
exist; the principles of the deslgn of the electronic digital compu-
ters are presented, as a rule, in 1solation from the general theory of)

algorithms.

- S—— E—aac— -t - e S - LIPEE B e

In addition, the fifth chapter presents a detalled description of
the universal algorithmic language ALGOL-60 and gives examples of
ALGOL programming of various problems, primarily from the theory of
self-organizing systems. In particular, a discussion 1s given of the
question of the programming of the perceptron learning process and of
a simplified model of the process of blological evolution. Again, on
this question there 1s little information in the monographic litera-
ture: Report on the Algorithmic Language ALGOL-60 (edited by P. Naur),

published by the Computer Center of the USSR Academy of Sclences (Mos-
cow, 1960) i1s of a reference nature and not sultable for paractical in-
struction on the ALGOL language.

In the last (sixth) chapter there is given a summary exposition
of the fundamentals of the restricted predicate calculus (including
the formal system of Gentzen) and of formal arithmetic (including the
Godel theory on arithmetic incompleteness). Detalled proofs of the
propositions presented can be found in the previously cited monographs
of Kleene and Novikov. This chapter also contalns elements of the auto-
mation of proofs and formulations of theorems in deductlive theoriles.
The questions touched on here have not yet been covered in the mono-
graphic literature.

As indicated by the list of the material presented in the book,
several interesting branches of modern cybernetics are not included in
the book. Considering the criterla mentioned previously for the selec-
tion of material, we could, for example, include a presentatlion of the
fundamentals of mathematical linguistics or elements of game theory.
However, even without this, the considerable size of the book has
forced the author to refrain from attempts to include any additional
material. At the same time, the contents of the book do encompass
those questions which at the present time as usually considerecd the

s 7 -

T

? Lo

basis of theoretical cybernetics (with account for limiting ourseclves
to discretc methods). The author hopes, therefore, that the book will
be of assistance in mastering the mathematical appsratus of cybernet-
ics and preparing for work in the theoretical flelds to individuals
occupled in individual applied aspects of cybernetics and also to the
individuals interested in the theoretical problems of cybernetics.

In the present book extensive use has been made of materlal from
courses on the various branches of cybernetics and mathematical logic
presented b y the author at Klev Unlversity and at the Kiev House of
Sclentific and Technical Propaganda in 1959-1962. A part of this mate-
rial (theory of algoriths, for example) has been published previously
for service use. The present bouk can be considered to be the first
sufficlently complets textbook for students of the branches of cyber-

netics mentioned above.

Chapter 1
ABSTRACT THEORY OF AUTOMATA
§1. ALPHABETIC OPERATORS AND ALGORITHMS
In modern mathematics it i1s customary to call the structurally
specified correspondcnces between words in ~bstract alphabets algo-
rithms.
Any finite ensemble of objects, termed the letters of a given al-

phabet, 1s called an abstract alphabet. The nature of these objects 1s

a matter of complete indifference to us. For example, the letters of
the alphabet of any language (Russian, Latin, Greek, etc.), digits,
any symbols, figures, etc., can be considered to be letters of ab-
stract alphabets. If we wish to, we can 1lntroduce an abstract alphabet
whose letters wlll be consldered to be entire words of any particular
language (Russian, for example). It is important only that the alpha-
bet considered be finlte, 1.e. that 1t consist of a finite number of
letters.

Introducing the concept of an (abstract) alphabet, we define a
word 1n this alphabet as any finite ordered sequence of letters. For
example, in the alphabet A = A(x,y) consisting of the two letters x
and y we conslder any sequence X, y, XX, Xy, yX, ¥y, XXX, ... to be
words. The number of letters in a work 1s termed normally the length
of this word, so that the words we Jjust listed in the alphabet have re-
spectively the lengths 1, 1, 2, 2, 2, 2, 3,...

Along with words of positive length (consisting of no less than

one letter), in many cases it is convenient to consider also an empty

-9 -

word, not contalning even one letter. In the present chapter use is
made of the small Latin letter e to designate an empty word. Sometimes,
however, 1t 1s convenient to designate the empty word in complete ac-
cordance with its definition, not writing any letter in the place cor-
responding to thls word.

We note that, with the accepted definition, the concept of a word
in the Russian alphabet will differ from the concept of a word as ac-
cepted in ordinary language. With our definltion, words are to be con-
sidered any combination of letters, including meaningless combinations:
the combinations of letters "algorithm", "mathematics", "'klt", "dddd"
must to an equal degree be conslidered words of the Russian alphabet
(considered as an abstract alphabet).

With expansion of an alphabet, i.e., with inclusion in its compo-

sition of new letters, the concept of the word may undergo significant
changes. If, for example, we expand the Russian alphabet by the "let-
ters" (" " — parentheses) and (, — comma), then the four words
which we have Jjust written out 1in the Russlian alphabet can be consid-
ered as a single word i1n the alphabet expanded in this fashion. By com-
plementing the Russian alphabet with the punctuatlon marks and the
separation mark (empty space left between two neighboring words), we
can i1f we wish conslder entire phrases, paragraphs and even entire
books as individual words.

In Just the same way, the expression 69 + 72, which 1s two words
(69 and T72) in the alphabet A of the 10 digits (0,1,2,3,4,5,6,7,8,9),
Joined by the sum sign, can be considered as a single work in the ex-
panded alphabet A which 1s obtained as the result of joining to it the
new letter "+" (sum sign).

Alphabetlic operator or alphabetic representation is the term giv-
en to any correspondence (function) which associates words in a

- 10 -

particular alphabet to words in the same or another fixed alphabet.
The first alphabet is here termed the input, and the second the out-
put alphabet of the given operator. In the case of coinclidence of the
input and output alphabets, we say that the alphabetic operator is giv-
en in the corresponding alphabet.

Hereafter we consider primarily single-valued alphabetic opera-

tors, assoclating to each input word (word in the input alrhabet of

the operator) no mcre than one output word (word in the output alpha-

bet of the operator). If the alphabetic operator does not assoclated
with a given input word p any output word (including an empty word),
then we say that 1t 1s not defined on this word. The ensemble of all

words on which an alphabetic operaﬁor is defined 1s termed its domailn
of definition.

On the basis of the foregoing, in the future we shall always un-
derstand (if not otherwise specified) by the term "alphabetic operator"
a unique, generally speaking, partially defined mapping of a set of
words in the input alphabet of the operator into a set of words in its
output alphabet.

Thanks to the possibility of specifying the alphabetlc operators
on less than all the words, we can, without loss of generality, every
time consider that the input and output alphabets of the operator coin-
cide., For this it is sufficilent, clearly, to combine the input and out-
put alphabets of the glven operator ¢ into one common alphabet A and
to consider the opera?or @ as an operator in this combined alphabet,
speciflied only on those words which appeared in the primitive region

of definition of the operator o.
With each alphabetic operator there 1s assoclated an intuitive
concept on 1ts complexity. The simplest operators are those which per-

form letter-by-letter mapping. This mapping consists 1n each letter X%

- 1] =

*i—

of the 1input word p being replaced by some letter y of the output al-
phabet operator, depending only on the letter x and not on the cholce
of the input word p. Letter-wise mapping 1s completely defined by spec-
ifying the correspondence between the letters of the input and output
alphabets.

The so-called coding transformations, which for brevity we shall

term simply codings, are of great importance for the later discussion.
In the simplest case the words in one alphabet, say in alphabet A, are
coded by words in the other alphabet, B, as follows: to each letter ay
of the alphabet A there is associated some finite sequence bil, b12,

ie oD of letters 1n the alphabet B, called the code of the correspond-

i
irg lgtter, such that to the different letters of the alphabet A there
are assoclated different codes.

For the construction of the desired coding transformation 1t is
sufficient now to replace all the letters of any word p in the alpha-
bet A by the codes corresponding to them. The word thus obtalned in
the alphabet B we term the code of the original word p. We stlpulate

that the coding transformation must necessarlly be reversible. In oth-

er words, different words in alphabet A must have different codes. The
condition of reversiblility of the coding 1is nothing other than the

condition of mutual uniqueness of the corresponding coding transforma-

tion.
It 1s easy to see that reversibllity of the coding 1s not ensured
by the single condition that the codes of the various letters (words

of length 1) be different. Actually, if to the letter a., there is as-

1
soclated the code bb, and to the letter a, the code b, then the code
bbb will clearly correspond both to the word a1a2 and to the words

aeal and aeaeae.

= 42F .

4

It is not difficult to verify that the coding will be reversible
whenever the following two conditions are fulfilled:

a) the codes of the different letters of the original alphabet A
are different;

b) the code of any letter of the alphabet A cannot coincide with
any of the initial segments of the codes of the other letters of this

<

alphabet, ¥

Actually, let us assume that both of these conditions are satis-
fled and let the word q = bilbie...bin be the code of some word p =
aJlaJQ...aJm in the alphabet A. Let us show that from the code g we
can uniquely recover the word p. In view of condition b) only one ini-
tial segment of the word g can coincide with the code of any letter of
the alphabet A, It 1s clear that the code of the letter aJ] is such a
segment. Discarding this segment, we obtaln the code q of the word
Py = aJQ...aJm. Applylng to it the same reasoning, we restore uniquely
the following letter (aJQ) of the word p, and so on. Using this tech-
nlque, all the letters of the word p are restored one after the other.
’ Consequently, to any glven code there can correspond only one word 1in
the alphabet A, which proves the reversibility (mutual uniqueness) of
the coding transformation.

Condition b) is satisfied if the codes of all the letters of the
original alphabet have identical length. By conventlon we call the cod-
ing in this case normal. Use of coding permits reducing the study of
arbltrary alphabetic transformations to alphabetlc transformations in
some once-and-for-all selected standard alphabet. Most frequently, as

such a standard alphabet there 1ls chosen the so-called binary alphabet,

® consisting of two letters which are usually identified with the digits

O and 1.

- 13 =

Let A be an arbitrary alphabet and B be a standard alphabet (bi-
nary, for example) consisting of more than one letter. If n is the num-
ber of letters 1n alphabet A and m is the number of letters in
alphabet B, then we can always select the number k so as to satisfy
the inequality

mt > n. (1)

Since the number of different words of length k in the m-letter
alphabet is clearly equal to mk, then inequality (1) shows that we can
code all the letﬁers in alphabet A with words of length k 1n alphabet
B so that the codes of the different letters are different. Any such
coding will be normal and will generate, in light of what was sald a-
bove, a reversible coding transformation of the words in alphabet A
into words in alphabet B. We designate this transformation by a and

use a'l

to designate the reverse transformation which transforms each
word g in the alphabet B, which 1s the code of some word p in alphabet
A, into the word p.

Now 1f ¢ is an arbiltrary alphabetic operator in alphabet A, then
the transformation y = a'lwa obtalned as the result of sequential per-
formance of the transformations a'l, ¢ and a will be, obviously, some

alphabetic operator in the standard alphabet B. We term thls operator
the alphabetlc operator in the alphabet B, conjugate (with the ald of

the a coding) with the alphabetic operator g.
The operator ¢ 1s uniquely recovered from the conjugate operator
¥ and the corresponding coding transformation a
q-a\pa". (2)
With the aild of thils equation, and also its dual equation which
was written previously

v =d 'pa (3)

- 14 -

the arbitrary alphabetic operators are reduced to alphabetic operators
in the standard alphabet. This reduction, of course, can be performed
by an infinite number of different methods, since there exist infinite-
ly many different codings of words in any gliven alphabet by words in
the standard alphabet.

The described reduction can also be accomplished in the case of
alphabetic operators for which the input and output alphabets are dif-
ferent. For example, let ¢ be an arbitrary alphabetic operator with
the input alphabet A and the output alphabet C, let B be the standard
alphabet, let a be any (reversible) coding of words in the alphabet A
by words 1in the standard alphabet, and let ¥y be an analogous coding of
the words in alphabet C.

Now it 1s easy to see that the transformation v = a~-®Y is an al-
phabetic operator in the standard alphabet B by which under the condi-
tion of knowing the coding transformations a and Yy the original trans-
formation ¢ 1s uniquely restored.

The concept of the alphabetlc operator ls extremely general. Actu-

ally any processes of information conversion reduce to it or can be in

some sense reduced to it. Here and in the future, by information we
shall understand not only intelligent communications but 1n general
any information on processes and states of any nature which can be de-
tected by the sense organs of man or by instruments.

For certaln speclalized forms of information, for example infor-
mation which is lexical or numerical, the alphabetic method of specifi-
cation is the most natural and is constantly used. The transformations
of these forms of information are reduced to the alphabetic operators
in the most indirect fashion: both the input and the output informa-
tion in any information converter in this case can be represented in
the form of words, and the conversion of the information reduces to

-15 =

the establishment of some correspondence between the words. We recall
that with rational expunsion of the alphabet with words, account can
be taken 1n the lexical information not onliy of ordinary words, but
also entire sentences and even any sequences of sentences.

One of the characteristic tasks of the conversion of lexical in-
formation is the translation of texts from one language to another, It
1s well known that the translation problem does not reduce to Rhe prob-
lem of cstablishing the éorreépondence between the words of the lan-
guages which are involved in the translétion. If, however, we consider
as words the entire books or at least individual sections of the book,
then the problem of translation completely reduces to the problem of
establishing correspondence between such generalized words. Thus, the
problem of translation from one language to another can be treated as
the process of the realization of some alphabetic operator.

It 1s worthy of note, moreover, that quite high-quallty and gram-
maticél translation permits, as is known, the possibility of known mod-
ifications of the translated text. Therefowe the process of transla-

tion is described, not by the usual single-valued alphabetic operator,

but by a multi-valued, or so-called probabilistic, alphabetic operator.

Such an operator assoclates with each input word from the region of
its definition not a single output word, but a whole ensemble of out-
put words. In the specific application of thls operator to a particu-

lar input word p there 1s a random selectlon of the output word from

the ensemble of output words corresponding to the word p.

Ip addition to the a;phabetic operators for the translation from
one language to another, we can construct alphabetic operators which
resolve other problems of the conversion of lexlical information, for
example the problem of editing texts in a particular language, the

problem of composing abstracts of articles, etc. It is n~t difficult
- 16 -

TR M, sSSP T St -

to expand the field of application of the alphabetic operators, using
the alphabetic representation not only for lexlcal information but al-
so for other forms of information. For example, using the known tech=-
nlques of chess notation, we can write chess positions in the form of
words consisting of the letters of the Russlan and Latin alphabets,
digits, and punctuation marks (comma). In this case the process of the
chess game can be interpreted as the process of establishing the cor-
respondence between any glven position and the position resulting from
it after performing the next move. Thus, agaln 1In thils case we arc
dealing with an alphabetic operator (probabilistic, generally speaking).

Similarly, it 1s not difficult to represent in the form of proces-
ses or realization of the alphabetic operators many other processeg of
informatlion conversion, for example the orchestration of melodles, the
solution of mathematlcal problems, the problem of production planning,
etc.

It may seem at flrst that for the characterization of the conver-
sion of continuous information (for example, visual or random auditory
vensations) the concept of the a;phabetic operator is insufficilent.
However this is not so, or more precisely, not entlrely so.

The reception and converslion of continuous informatlion is always
accomplished with the ald of nonldeal instruments which do not react
to extremely small variations of the characteristics of the informa-
tion being converted. In real instruments, detecting and converting
continuous information, there always exist several limitations which
make 1t possible to consider this information as alphabetic informa-
tion, For greater clarity, let us consider visual information (the

same phenomena occur with the other forms of specifylng continuous in-

formation).

= 17 =

vy —as e p—

The first limitation is that of the resolving power of the instru-

ment which receives the information. This limitation leads to the situ-
ation where sufficlently closely spaced points of the portlion of space
on which the information in question is distributed (for example, a
picture or drawing) is sensed by the instrument (say, the human eye)
as a single point. This lmplies the possibility of considering this in-
formation as information given, not at an infinite number of points,
but only at a finite number of polints.

The second limitation 1s assoclated with the limited sensitivity

of the instrument receiving the information. This limitation leads to
the instrument being able to dlstinguish only a finlite number of lev-
els of the quantity carrying the information (for example, the bright-
ness of individual points of a drawing).

On the basis of the described limitations we come to the conclu-
sion that the instrument, as a result of 1ts nonldeal nature, can at
each glven instant sense only one pattern of a finite (and not infin-
ite as it might seem without account for the limitations indicated)
number of different patterns of the instantaneous spatial distribution
of the information in question.

Introducing for each such pattern a speclal literal notation, we

come to the finite alphabet A which with account for the indicated 1lim-

ltations 1s completely adequate for the characterization of the infor-
mation arriving at the input of the instrument (nonideal) which we are
conslidering at every given instant of time. If we denote by the letter
r. the number of spatial polnts sensed by the instrument as individual
points, and by the letter m the number of levels of the physical quan-
tity carrying the information which are distinguished by the instru-
ment, then the number of letters 1n the alphabet A will be equal, it
is easy to see, to m" (for simplicity we assume the number of levels

- 18 -

-~ = - RS e bl
m‘, " '.l TS e -

which are distinguishable by the instrument to be identical for all
points of the space).

Of course, the number of letters in the alphabet A which we have
Just estimated may be found to be excessively lérge (in the case of
the reception of visual information by the human eye 1t may be esti-
mated as a one with several thousand zeros following it). Nevertheless
it is still finite, and from the abstract theoretical point of view
the essential thing 1s only whether the alphabet A is finite or infin-
ite.

Continuing our lnvestigation, we note that every real instrument
which receives and converts information has, along with the two limita-
tions indicated, a third limitation. Here we are dealing with the 1im-
ited passband of the Ilnstrument, which does not permit it to differen-
tiate excessively rapid changes of the received quantities. In view of
the familiar Kotel'nikov principle (Ref 46), the limitation of the
pass band 1s equlvalent to the introduction during the information

transmisslion 1n place of the usual continuous time a conditional dis-

crete time, neighboring instants of which differ from one another by

quite definite (although usually very small) segments of time. Roughly
speakling, as such an elementary segment of time we select the maximal
segment in the course of which the instrument 1n question 1s incapable
of differentlating the variations of the quantility carrylng the Informa-
tion.

After the introductlion of this descrete time, the information re-
ceilved by our instrument after any finite segment of time t naturally
is represented in the form of a word in the previously introduced al-
phabet A. The number of letters in thils word is equal to the number of
instants Tysere s Ty of the discrete time located in the given time seg-
ment t, and its 1-th letter (1 = 1,2,...,k) is the information

- 19 -

Lwmas

received by the instrument at the instant of time Ty expressed 1n the
form of a letter of the alphabet A.

Since analogous conslderations are applicable not only to the in-
put lnformation but also to the output information, any real informa-
tion converter must be considered (with account for the limitations
indicated above) as an instrument realizing some alphabetic operator.

The alphabetic operator realized by the instrument completely (with

an accuracy to the information coding) determines the informational es-

sence of this 1lnstrument, in other words the information conversion

performed by this instrument.
Thus, we have established the extremely great generallty of the

concept of the alphabetic operator. Actually the theory of any informa-
tion converter was found to reduce to the study of the alphabetlc oper-
ators. And man encounters information converters literally at every
step of hils practical existence. The various instruments and devices
for automatlic control are informatlion converters. Finally, one of the
most lmportant and essential aspects of the study of the activity of
man himself 1s the aspect assoclated with consideration of man as a
very complex and highly-perfected lnformation converter. All this

makes it possible to consider the theory of the alphabetic operators
one of the most important component parts of cybernetics.

The basis of the theory of the alphabetic operators are the meth-
ods of representing them. In the case when the region of definition of
definition of the alphabetic operator is finite the question of its
representation, at least in the theoretical sense, 1s resolved very

simply: the operator can be represented by a simple correspondence ta-

ble. In the left side of such a table we write out all the words ap-
pearing in the reglon of definltlon of the operator in question, and

in the right side we wrlte the output words obtained as the result of
- 20 -

the application of the operator to each word from the left side of the
table.

Of course, if the reglon of the definition of the alphabetlic oper-
ator 1s sufficiently large, this method of representation can become
excesslvely cumbersome and therefore not applicable in practice. How-
ever, for the moment we shall not take such considerations into acount,
limiting ourselves to the establishment only of the theoretical possi-
bility of representing particular alphabetic operators.

In the case of an infinite region of definition of the alphabetic
operator, its representation with the ald of a simple correspondence
table becomes impossible in principle, since man does not have at his
disposal the means to permit him to actually write out or perceive an
infinite set of words. However, it is well known that man long ago
learned to represent operators on infinite sets of words without writ-
ing out the entlre correspondence tables. For this purpose it is suf-
ficient to consider, for example, the alphabetic operator represented
by the formula

xx...x>yy...y (n=12,...) (4)

N g?

n times n+l times

This formula defines the correspondence on an infinite set of
words, achieved without actually writing out the entire correspondence
table (which, of course, in this case cannot be done). In place of the
correspondence table itself, this formula glves a rule with the aild of
which, after a finlte number of steps, there can be established the
output word corresponding to any prescribed input word from the re-
gelon of definition of the alphabetic operator being considered.

An analogous situation arises every time we need to represent an
alphabetic operator with an infinite region of definition; in place of

the correspondence table 1tself there is glven a flnite number of

- 2] -

rules permitting after a finite number of steps the finding of the pre-
scribed line of this table (the value of the alphabetic operator on

any input word appearing in the region of its definiticn).
Alphabetic operators represented with the ald of finite systcms

of rules are customarily termed algorithms.

On the baslis of the dlscussion above, we can easily understand

.

that every alphabetic operator which can actually be represented 1is of
necessity an algorithm. In particular, all alphabetic operators with
finite regions of definition represented by (finite) correspondence ta-
bles will be algorithms. Formula (4) also represents an algorithm.

It i1s not difficult to construct other examples of algorithms.
Assoclating with each whole positive number its square, we obtain an
alphabetic op.'ator 1n the alphabet conslsting of all the digits of
the number system used for the representation of these numbers. Since
the rules for squarling make 1t possible after a finlte number of steps
to obtaln the square of any prescribed whole number, this operator can
be consldered as an algorithm.

All the specific alphabetlc operators considered in the present
chapter (including the operators for translation from one language Lo
another, chess moves, etc.) also can be represented with the aid of
finlte systems of rules and can, consequently, be considered as algo-
rithms.

We must emphasize one distinction existing between the concepts
of the alphabetic operator and the algorithm. In the concept of the al-
phabetic operator only the correspondence itself, established by the
operator between the input and output words, is of essence, and not
the method by which thls correspondence is established. In the concept
of the algorithm, on the other hand, the primary emphasis i1s placed on

the method of representation of the correspondence established by the

<9

algorithm. Thus, the algorithm 1s nothing other than an alphabetic op-
erator together with the rules defining its operation.

The concept of equality for the alphabetic operators and algo-
rithms is defined 1n accordance with the foregolng. Two alphabetic op-
erators are considered equlvalent 1f they have the same region of def-
inition and associate with any prescribed input word from this region
identical output words. The concept of equality for algorithms in-
cludes the condltions of equallity for the corresponding operators, but
also provides for colncldence of the systems of rules which represent
the operation of these algorithms on the input words. The algorithms
for which there coincide only the alphabetic transformations (opera-
tors) defined by then, but, generally speaking, not the methods of rep-

resentation, we shall term equivalent algorithms.

Usually in the abstract theory of algorithms we consider only
those algorithms to which there correspond single-valued alphabetic
operators. Every algorithm A of this kind differs in that to any input
word p from the domain of 1ts definitlon 1t assoclates a completely de-
fined output word q = A(p) regardless of the conditions in which the
algorithm A operates. Such algorithms and thelr corresponding alphabet-

ic operators will be called determinate.

In many cases 1t 1s advisable to expand the concept of the algo-
rithm, introducling into the system of rules which describe the algo-
rithms the possibllity of the random selection of particular words or
particular rules. Here the probability of a particular selectlon must
be elther fixed 1n advance or determined 1n the process of realizatlon
of the algorithm. Such algorithms will be called random and will lead
to the multl -valued alphabetlc operators. More precisely, for any in-
put word p appearing in the domaln of definltion of the random algo-
rithm A, thls algorithm uniquely defines the probability ap(q) of the

- 23 =

appearance of the different output words g as the response to the in-
put word p. The probabilities ap(q) In the case of the usual random al-
gorithm must not vary in the process of its functioning, although the
algorithm itself can, of course, glve different responses with repcat-
ed application to the same input word p.

We need to consider also the so-called self-variable algorithms,

i.e., those algorithms which not only transform the input words ap-
plied to them but also themselves change in the process of this trans-
formation. The result of the action of the self-variable algorithm A
on a particular input word p depends not only on this word but also on

the history of the preceding operation of the algorithm, 1.e., on the

(finite) sequence of input wvords processed by the algorithm A prior to
the arrlval at 1ts input of the word p 1ln questilon.

The generalization of the concept of the algorithm by means of
the introduction of the possiblility of self-variation 1s applicable to
both the determinate and the random automata. In the latter case, de-
pending on the history of the previous operation of the algorithm,
there are changes of the probabllities ap(q) of the different output
words g associated by the algorithm A to any given input word p. This
dependence can, moreover, also be expressed by a random function rath-
er than a determinate one.

The self-variable algorithms are conveniently represented in the
form of a system of two algorithms, the first of which, the so-called
operational algorithm, performs the processing of the input words, and

the second, termed the monitoring or controlling algorithm, introduces

specific changes into the first, operational, algorithm. In Chapter !

it 1is shown that the property of self-varlabllity of the algorithm is

determined not so much by the structure of the device which realizes

the corresponding algorithm, as by the method of fractionation of the
- 24 -

T T, B e s e o e e o 5. =
S R 3 A P T Sm——
. e i T

e g

input information into individual words, which, as noted above, in the
case of the abstract alphabets 1s to a considerable degree arbitrary.
Thus, depending on the choice of this method the same device may 1in
some cases reallze a self-variable algorithm, in other cases it will
realize a non-gself-variable algorithm.

Throughout the first three chapters we shall consider only the
conventional (determinate, non-self-variable) algorithms without mak-
ing this stipulation 1n every instance. In the later chapters use will
be made also of the generalized concepts of the algorithms introduced
above.

§2. NORMAL ALGORITHMS

In this and the several following sections we shall study certain

general methods of representation of the algorithms which are charac-

terized by the property of universality, i.e., those methods which

make it possible to obtain an algorithm which 1s equivalent to any pre-
scribed algorithm. In this chapter rarious unilversal methods or repre-
senting algorithms are discussed, not in the historical sequency in
which they were developed, but in an order which is most convenient
from the point of view of the present volume. We begin our exposition

with the so-called normal algorithms suggested and studied by Markov

(Ref 53).
Every general method of representation of algorithms is termed an

algorithmic system. The algorithmic system usually includes objects of

a dual nature which, following Kaluzhnin (Ref 37), we shall term opera.-

{ors (or, more precisely, elementary qperators) and identifiers (more

percisely, elementary identifiers). Elementary operators are quite sim-

ple (simply represented) alphabetic operators whose sequential perform-
ance realizes any algorithms in the algorithmic system in question.

The 1dentifliers serve for the recognition of particular propertics of
- 25 -

the information processed by the algorithm and for the variation, de-
pending on the results cf the ldentification, of the sequence in which
the elementary operations follow one another.
For indicatlng the set of elementary operators and the order of .
their sequencing one after the other in the representation of any spe-
cific algorithm, 1t 1s convenient to make use of the directed graphs
of a special kind which, following Kaluhnnin (Ref 37), we shall term

the graph-diagrams of the correspondlng algorithms.

The graph-diagram of an algorithm is a finite set of circles (or
other geometrical figures), termed the elements of the graph-diagram,
which are interconnected by arrows. To each element, other than fne
two special elements which are termed the input and output, there 1is
assoclated some elementary operator or identifier. From each element
representing an operator, and also from the input element, there e-
merges preclsely one arrow; from each element representing an identl-
fler there emerge precisely two arrows; no arrow emerges from the out-
put element. Any number of arrows can enter an element.

The algorlithm deflned by any glven graph-diagram operates as fol-
lows. The input word enters first the lnput element and travels in the
directions indicated by the arrows, being transformed on passage

through the operator elements by the operators associated with these

elements. When the word enters an ldentlifying element a check 1is made

of the condition assocliated with this element (application of condi-
tional identifier). If the condition is satisfied, the word emerges
from the element along one of the arrows (usually indicated by the sym-
bol "+"), and if the condition is not satisfied it emerges along the
other arrow (indicated by the symbol "-"),

The word 1s not altered 1n the identifying elements. If the input

word p applied to the input element of the graph-diagram, after passing
- 26 -

- eme——— a) P
. S B - -:’m‘?

through the elements of the diagram and beilng transformed, arrives aft-
er a finite number of steps at the output element, it 1s considered

that the algorithm 1s applicable to the word p (the wcrd P 1s 1in the

domain of definition of this algorithm), and the resul® of the action

of the algorithm on the word p wlll be that word which is in the out-
put element of the diagram. If after the application of the word p to
the input element of the graph-diagram its transformation and movement
along the graph-diagram lasts infinitely long, without arrival at the
output element, then 1t is considered that the algorithm 1s not appli-

cable to the word p, in other words, the word p is not in the domain
of definition of the algorithm.
In normal algorithms use is made only of one type of elementary

operator, termed substitution operators, and one type of elementary 1-

dentifier, termed occurrence identifier. We shall describe these idcn-

tiflers and operators in more detall. To do this we shall first ac-

qualnt ourselves with the concept of occurrence of one word in another.

Let p and g be two arblitrary words in a particular alphabet. Ve
say that the word g occurs in the word p if the word p can be repre-
sented in the form p = plqu, where P, and p2 and some words, possibly
even empty ones. The occurrence found for the word g in the word p 1s

termed first left (or simply first) occurrence if in the considered

representation of the word p in the form p = P, 9P, the word Py has the
shortest possible length among all similar representations of the word
P

The occurrence ldentifier 1is given by the indication of some
fixed word g, and the sense of its application 1s that for any given
word p a check is made of the condition of whether or not the word g

occurs 1n the word p. The substitution operator is usually given in
the form of two words connected by an arrow, d) = 4. The operation of

-27 -

the operator amounts to performance of the substitution of the wcrd S
in place of the first left occurrence of the word a, in any given word
p. If we separate explicitly the first occurrence of the word ay in the
word p, writing the word p in the form P134Pos after the application of

the considered operator it is transformed into the word P,A5P5-

In the application of the occurrence identifier we agree to sepa-
rate the found (first left) occurrence of the identified word in the
given word by the use of parentheses. For example, applying to the
word p = XXyXyxx the occurrence ldentifier of the word q = Xy, we sepa-
rate the first occurrence of the word g in the word p as follows: p =
x(xy) xyxx.

The algorithms which are represented by graph-diagrams consisting
exclusively of word occurrence identifiers and substitution operators

are termed generallzed normal algorithms. Here it 1s assumed that to

each substututlion operator of the form q; = 4y there 1s conn:cted only
a single arrow: an arrow with a "+" sign emerging from the q; identi-
fier,

An example of a graph-diagram cf a generalized normal algorithm
is shown in Fig.1l. On this figure the ldentifliers are shown in the
form of rectangles. The operator Xy — denotes substitution of an empty
word 1n place of the first occurrence of the word xy. In accardance
with the notation of the empty word which was used 1n the preceding
section, this operator can be written also in the form xy — e.

Considering the operation of the algorithm A given by the graph-
diagram of Fig. 1,we note that the first operator frcm the top per-
forms the transposition of x to the left and of y to the right portion
of the word until the word takes the form xx...xyy...y (all x precede
all'x). Only after reduction of the word to this form does the second

operator come into action, annihilating the palrs xy until only x or v
- 28 -

remain in the word. If in the originally given word p there were m X's
and g.y's, then as a result of the operation of the algorithm A it is
transformed into the word q = A(p), having the length |m-n| and con-
sisting of only x's (1f m > n) or only y's (if n > m).

Having considered the generalized normal algorithms, let us turn
to the characteristic of the normal algorithms themselves. Those gen-
eralized normal algorithms whose graph-dlagrams have some special form

are termed normal algorlthms. In order to describe this form we note

that as a result of the definition of the generallzed normal algo-
rithms presented above, every operator q, = q, occurs palred with the
identifiler q in the graph-dlagram of such algorithms.

Let us combine in the graph-diagram each such pair of elements in-
to a single element, retalning for it the notation of the correspond-

ing operator.

a

*

Xy —o= o

@D b

Fig. 1. a) Input; Fig. 2. a) Input;
b) output. b) output.

From each combined element there will emerge two arrows: an arrow with
the symbol "+" along which there is directed the word subjected to the
action of the operator of the given element, and an arrow with the sym-
bol "—" along which the word 1s directed 1f the element operator is not
applied to it. Nonapplicability of the substitution operator to a word

denotes the absence of the occurrence of the left portion of the opera-

tor (the word a, in the operator q; = q2) in the given word.
=297

Using the described technique for comblning elements, the graph-
diagram of the algorithm shown in F..- 1 can be represented in the dia-
gram shown in Fig. 2. Such a graph-cia:sram with combined elements in
the case of the normal algorithms must s.tisfy the followlng condi-
tions:

a) all the combined (operator-identifier) elements of the graph-
diagram are ordered by means of assigning them the sequentlal numbers
from 1 to n, and a negative output (arrow with symbol "-") of the 1-th
element 1s connected to the (1 + 1)=th element (1=1, 2,...,n - 1)and &
negative output from the n-th element 1is connected to the output ele-
ment of the graph-dlagram;

b) the positive outputs (arrows with the symbol "+") of all the
comblned elements are connected elther to the first or to the output
element of the graph-diagram. In the first case the substitution of
the operator of the corresponding element 1s termed ordinary, in the
second case it is termed final.

c) the input element 1s connected by an arrow to the first com-
bined (identifier-operator) element.

These conditions are necessary and sufficient for the graph-
diagram which satisfied them to represent an ordinary normal algorithm
rather than a generalized normal algorithm. It 1s easy to verify that
the graph-diagram shown in Fig. 2 is not a graph-diagram of a normal
algorithm since it does not satlisfy the second of the conditions Jjust
formulated (condition "b").

The normal algorithms are customarilly represented not by graph-
diagrams but simple by the ordered set of substitutions of all the op-
erators of the given algorithm, termed the dlagram of the given algo-

rithm. Here the ordinary substitutions are written, as shown above, in

- 30 -

the form of two words connected by an arrow (ql-» q2) while the final
substitutions are designated by an arrow with a dot (ql-» .q2).

The order of performance of the substitutlons i1s completely deter-
mined after this by the conditions "a", "b" and "c¢". Actually, as a rec-
sult of these conditions the arbitrary i-th substitution of the algo-
rithm dlagram must be performed in, and only in, the case when it it
the first of the applied substitutions (all substitutions from the
1-st to the (1 - 1)-th not applied). The process of performing the sub-
stitutlions is terminated only when none of the substitutions of the
diagram is applicable to the word obtained or when some final substitu-
tion 1s performed (for the first time).

As an example, let us consider the operation of the normal alfo-

rithm A glven by the diagram

yyx-»y;
XX =,

vyy = - x.

Let us assume that we are given the input word p = xyxxxyy. The
first substitution of the algorithm A is not applicable to this word,
in order to apply the second substitution we 1isolate the first occur-
rence of its left part (xx) in the word p:p = xy(xx)xyy. After perform-
ance of the second substitution of the algorithm, we obtain the word
Py = XYYXYY, to which the first substitution of the algorithm is appli-
cable: py = x(yyx)yy = xyyy = Ppe Only the third substitution is appli-
cable to the resulting word: p, = x(yyy) = xx = P3» and since it 1s
denoted as a filnal substitution, the word p3 is the final result of
the action of the algorithm A on the original word p, 1i.e., p3 = A(p).

If the third substitution of the algorithm A were not a final svb-
stitution, then the process of substitution could be continued aiid in
place of the word p3 = XX we would obtain the word py =y as the rec-
sult of the actlon of the algorithm on the orlginal word p.

- 30 =

: ~ B Cpmm— - - —— s -~ =
m. ,l. l‘ < °

The use of final substitutions 1n the normal algorithm d!agrams
along with the ordinary substitutions 1s necessary in order to have

the possibility of realizing in such diagrams the arbitrary construc-

tlve alphabetic operators, 1l.e., those alphabetic operators which are
determined with the use of a finlte number of rules. Actually, any nor-
mal algorithm A whose diagram does not contain a single final operator
can terminate its operation only when none of its substitutions is fur-
ther applicable. This implies directly that repeated application of al-
gorithm A to the word A(p) obtalned as a result of the application to
any input word p carnot change this word. In other words, the follow-
ing identity relation (valid for any input wordlp) 1s satisfied for
the algorithm A (see Markov [53]):

AA(p)) = A(p). (5)

By no means every constructive alphabetlc operator satisfles this
relation. An example of an alphabetic operator for which relation (5)
is not valid 1s the operator B, whose actlon on any word p amounts to
prefixing some fixed letter X to the left of thils word: B(p) = xp.

Frcm what we have sald above it 1s clear that thls operator cannot be
realized by the use of a normal algorithm whose dlagram does not con-
tain final substitutlors.

At the same time it 1s easy to verify that thls operator 1s real-
ized by the normal dilagram consisting of the single final substitution
— +x (or, what 1s the same, e = -x). Actually, as a result of the defi-
nition of occurrence taken above, an empty word occurs in every word p,
and its first occurrence will not have a single letter on its left. It
follows directly from this that the use of this substitution on the ar-
bitrary word p converts it to the word xp.

It is no less evident that in the construction of the theory of

normal algorithms we cannot limit ourselves to only final substitutlons.
- 32 -

Actually, the normal algorithm whose dlagram consists only of final
sbstitutions operates on each input word p with no more than one of
these substitutlons, after which the required output word A(p) 1s ob-
tained immediately. In view of the finlteness of the algorithm diagram,
the modull of the differences of the lengths of the words p and A(p)
are bounded in the aggregate (for any selection of the input word p)
by the same number N (the maximum of the modull of the differences of
the lengths of the words 1ln the left and right sides of the substitu-
tions of algorithm A).

There do exlst, however, simple constructive algorithms for which
the modull of the differences of the lengths of the input and correc-
sponding output words are not bounded in the aggregate. An example of
such operators might be the operator D for the doublling of the input
words, whose action on any input word p i1s determined by the equality
D(p) = pp. From what we have sald above, it is clear that the repre-
sentation of thils operator in the form of a normal algorithm whose dia-
gram contalns only final substitutions 1s obviously impossible.

Thus, 1f we present to an algorithmic system based on the use of
normal algorithms the requirement of unlversallty (possibility of con-
structing a normal algorithm which 1s equivalent to any a priori speci-
fied algorithm), then a necessary condition for such universality is
the use of both forms of substitutions, both final and ordinary. This
condition is also sufficlent, i.e., we can formulate the normalization

principle (see Ref. 53).
Normalization principle. For any algorithm (constructively given

alphabetic representation) in the arbitrary finite alphabet A we can
construct an equivalent normal algorithm on the alphabet A,

The concept of a normal algorithm on an alphabet which 1s used on

the formulation of the normalization principle means the following. In
- 33 -

many cases 1t is not possible to construct a normal algorithm equiva-
lent to a given algorithm (in the alphabet A) if we use only letters
of the alphabet A in the substitutions of the algorithm. However, we
can construct the required normal algorithm by adding to the alphabet
A some number of new letters or, as we usually say, performing an ex-
pansion of the alphabet A. In thls case it 1s customary to say that
the constructed (normal) algorithm is an algorithm on the alphabet A.

We agree, however, that in splte of the expansion of the alphabet the
algorithm will as before be applied only to words in the origlnal al-
phabet A.

As shown by Markov [53] and Nagornyy [58], if we can construct
the normal algorithm equivalent to a given algorithm in the alphabet A
by Jjoining to the alphabet A some (possibly very large) finite number
of letters, then we can construct its equivalent normal algorithm by
adjoining to the alphabet A only a single additional letter.

It is not possible to give a rigorous mathematical proof of the
normalization principle, since the concept of the arbitrary algorithm
1s not a rigorously deflned mathematical concept. Therefore, we must
approach 1ts substantiation Jjust as we approach the substantliation of
every law or principle of natural sclence. The substantiation which we
can give the normalization principle in this framework makes 1t possi-
ble to consider this principle credible to a very high degree. We
shall indicate the basic processes of thls substantiation. In order to
simplify the formulations, we shall agree, following Markov [53], to

term a particular algorithm normalizable 1f we can construct its equiv-

alent normal algorithm (using, possibly, expansion of the alphabet)
and term 1t unnormalizable otherwise. We can now state the normaliza-
tion principle in a somewhat altered form.

All algorithms are normalizable.

The validity of this principle 1s based first of all on the fact
that all the algorithms known at the present time are normalizable.
Since in the course of the long history of the development of the ex-
act scilences a considerable number of different algorithms have been
devised, this statement 1s convincing in 1itself.

In actuality it 1s even more convincing. We can show that all the
methods known at the present time for the composition of algorithms
which make it possible to construct new algorithms from the already
known ones do not go beyond the 1limits of the class of normalizable
algorithms. In other words, if the original algorithms were normaliza-
ble, then any compositions of these algorithms (among the number of
forms of compositions known at the present time) will also be normal-
izable. This implies that for the construction of an example of an un-
normalizable algorithms 1t 1s necessary to use techniques which are
qualitatively different from everything the mathematician has encoun-
tered up till now.

However this is not all. A whole series of sclentists have under-
taken special attempts to construct algorithms of a more general form
and all these attempts have not been carried beyond the 1limits of the
class of normallzable algorithms. We shall consider one of these at-
tempts (the algorithmic scheme of Kolmogorov-Uspenskly) below. The
fallure of these attempts 1s 1in 1tself the most striking evidence 1in
favor of the validity of the normalization principle.

Thus the normalization principle should be considered sufficient-
ly substantiated, although this substantiation does not exclude com-
pletely the possibility of 1ts refutation in the future (by construc-
tion of an example of an unnormalizable algorithm). In any case, the
normalizable algorithms encompass a slgnificant portlon of the algo-

rithms (if not all) and therefore the system of normal algorithms can

- 35 -

Ay~

N Yol

be considered in practice to be a universal algorithmic system.

Let us consider now some of the common forms of compositions of
algorithms which were mentioned above. We shall deflne not the composi-
tion of the algorithms themselves, but the composition of their corre-
sponding alphabetical representations, however, as remarked above, the
possibility of normalization of the result of the composlition of the
normal algorithms makes it possible (at least in the class of normal
algorithms) to extend the definition of the composition of the repre-
sentations to the composition of the algorithms themselves.

One of the most common forms of composition of algorithms (repre-

sentations) is the superposition of algorithms. In the superposition

of the two algorithms A and B the output word of the first algorithm
(A) 1s considered as the input word of the second algorithm (B), so
that the result of the superposition of the algorithms A and B can be
represented in the form D(p) = B(A(p)). This definition extends to the
superposition of any finite number of algorithms.

A superposlition of generalized normal algorithms can be consid-
ered an a generalized normal algoritnms. For this it is sufficient
that the output element of the graph-diagram of each preceding algo-
rithm be combined with the input element of the succeeding algorithm.
The normalization of a superposition of normal algorithms requires con-
siderable skill, however it too can always be accomplished [53].

We shall point out some other forms of compositions of algorithms.

The union of the algorithms A and B in the same alphabet X is the
term given to the algorithm C in the same alphabet which transforms
any input word p contained in the intersection of the domains of defi-
nition of the algorithms A and B into the words A(p) and B(p) written
side by side; this algorithm 1is considered undefined on all the remain-

ing input words.
- 36 -

A ramification of algorithms i1s a composition of the three algo-

rithms A, B and C. Designating the result of this composition by D, we
shall consider that the domaln of definiticn of the algorithm D coin-
cldes with the intersection of the domains of definition of all three
algorithms A, B and C, and that for any word p from this intersectlon
D(p) = A(p) if ¢(p) = e, and D(p) = B(p) if C(p) # e.

A repetition (iteration) is the composition of the two algorithms

A and B, Designating the result of this composition by P, we define
that for any input word g the corresponding output word P(q) 1s deter-
mined by the following condition: there exists such a series of words
qQ=dgs Q35 Qps +evs Q= P(q), that for all i =1, 2,..., ngy =
= A(qi-l)’ for alli =1, 2,..., n=-1 B(qi) # e, and B(qn) = e. In
other words, the algorithm A 1s applied sequentlially several times
until a word 1s obtained which 1s transformed by the algorithm B into
the empty word e (we can, of course, select any other fixed ford rath-
er than the empty word).

All the methods described for the composition of the normal algo-
rithms lead to normalizable algorithms [53].

Of very great importance for the normal algorithms, Just as for
every universal algorithmic system, is the problem of the construction

of the so-called universal algorithm. Let us conslder the universal

algorithm in application to the normal algorithms.

Let us be required to construct a normal algorithm which will pef-
form the operation of any normal algorithm if we are given the dlagram
(substitution set) of this latter algorithm.

The exact formulation of the problem on the universal algorithm
can be accomplished by various methods. We shall describe one of the
most natural methods for such a formulation. To do this we first of
all fix some standard alphabet % (for example, binary). For all other

- 37 -

m— Rad S i

possible alphabets we fix some definlte method of coding the letters
of these alphabets in the selected standard alphabet. In the case of
the binary standard alphabet this can be done, for example, as follows:
the letters of any given alphabet are numbered sequentially using the
natural numbers, after which the 1-th letter 1s assigned the binary
code, beginning and ending with zero and having between these zeros ex-
actly 1 ones. If the total number of letters in the glven alphabet is
equal to n, then we introduce also the additional ((n + 1)-st, (n + 2)-
nd, etc.) letters for the designations of the symbols used in the dia-
grams of the normal algorithms (arrows, dots, separation sign between
formulas) and also for the designation of the special end sign which
stards at the beginning and end of the algorithm dlagram.

After writing the algorithm diagram with a single word and coding
the letters of thls word by the method Jjust described, we obtaln a
word in the standard alphabet, which 1s termed the transform of the

glven algorithm. For example, for the normal algorithm given by the di-

agram
xy-—+>Xx

Y.
the transform AY of the algorithm A in the binary alphabet can be ob-
tained as follows: we fix the numberation of the letters, considering
X to be the first, y the second, the arrow to be the third, the dot to
be the fourth, the separation symbol to be the fifth, and the end sym-
bol to be the sixth letter. Then the transform AY of the algorithm A
is written as: 060 010 020 030 010 050 020 030 O40 060. Here, for brev-
ity, in place of writing out in a row any positive number n of ones we
have written this number n 1tself.

Along with the transform of the algorithm A, there can also be ob-
talned by use of the coding in the standard alphabet x described above

- 38 -

TR Ry T SIS T ONES ene - ; ..“? B um—. o

R
o - N

the transform pu of any input word p of thils algorithm.

The following theorem on the universal normal algorithm 1s valid

(see Markov [53]).

There exists such a normal algorithm U, termed a universal normal
algorithm, which for any normal algorithm A and any input word p from
the domain of definitlion of this latter algorithm transforms the word
Aupu, obtalned by suffixing the transform of the word p to the trans-
form of the algorithm A, into the word which 1is the transform of the
corresponding output word A(p) into which the algorithm A transforms
the word p. If, however, the word p is chosen so that the algorithm A
is not applicable to it, then the universal algorithm U 1s not appli-
cable to the word Aupu.

This theorem 1is of tremendous value, since it implies the possi-
bility of the construction »f a machine which can perform the opera-
tion of any normal algorithm, which means, in view of the normaliza-
tion principle, the operation of any arbitrary algorithm. For this
purpose 1t 1s sufflclent to 1lnsert into the machine a prcgram, i.c.,
the transform of that normal (normalized) algorithm whose operation
the machine is to perform.

However, although in principle the possibility has been proved of
the normalization for all the algorithms known at the present time,
the actual performance of the normalization 1s a very serious matter
even for the relatively simple algorithms (the algorittm for the multi-
plication of two whole numbers, for example). This means that the pro-
gramming for a machine simulating the universal normal algorithm would
be excessively unwleldy and impractical. Therefore, 1n practice the
machines which make possible the realization of the operation of any
algorithm are designed on the basis of the use of other algoritimic
systems which differ from the system of the normal algorithms. Thes

- 39 -

systems are described in Chapter 5.
§3. THE KOLMOGOROV-USPENSKIY ALGORITHMIC DIAGRAM

The present section describes the method suggested by Kolmogorov
and Uspenskl [43] for the determination of algorithms of the most gen-
eral form. For the construction of the corresponding algorithmic dia-
gram they choose the method which 1s based only on those properties
which are without question lnherent to any algorithmic diagram and
which will realize these properties in particular specific forms with-
out permitting any loss of generality 1in dolng so.

I, the construction of such a gencralized algorithmic diagram it
13 useful to plcture as a visualizable model a man who 1s performing
the computation or other processing of information in accordance with
a particular precisely prescribed system of rules. The man performs

the role of information converter, while the converted information it-

selt . 3 located outside of the man. We shall assume for definlteness

that thls informatlion is written on sheets of paper, and that the man

has at his disposal an unlimited supply of clean sheets and an unlim-

ited reserve of space for storage of tillled-out sheets. The transforma- *
tion of the information realized by the man 1s broken down into indi-

vidual discrete steps. At each such step the man surveys some number

of completed sheets and, dependlng on the contents of these records,

using a strictly defined and time-lnvariant system of rules located in

his memory, he performs certaln alterations 1n the reviewed informa-
tion. These alterations may be of three forms: erasure (annihilation)

of the entire reviewed 1information or some portion of 1t, recording

on the reviewed sheets of new information, alteration of the ensemble

of reviewed sheets.

At first glance it seems that the requirement for the invariarnce

in the system of rules used for the performance of the processing of

- 40 -

e . S—- - S~

the tl.formation significantly narrows the range of problems consldered
in comparison with the problems which can in actuallty be solved by
man, since man is capable of altering the rules in the course of the
operation. In actuality this limitatlon 1s not significant, since the
nature of the alteration of the infcrmation at each step of the proc-
essing depends not only on the rules of the transformation but also on
this information itself. In this connection 1t 1s possible in case of
necessity to vary the nature of the information transformation wi.n
the course of time, to introduce corresponding changes in the informa-
tion itself, and not in the rules stored in the memory of the proces-
sor, in other words, to wrlite down in the rules on the shcets of paper
the required alterations and not to memorize them.

An absolutely necessary limitation 1in the design of any algorith-
mic system 1s the capabllity of the information processor to absorb at
any given instant of time only a limited quantity of information. If
the total volume of the material being processed exceeds the volume of

this active zone of the processor, then the information must be

brought into the processing gradually, step by step.

After these preliminary remarks we turn directly to the descrip-
tion of the Kolmogorov-Jspenskly dlagram. The information in this dia-
gram, as 1n general in the case of the alphabetic conversions, 1s writ-
ten with the aid of a f*nlte number of symbols, letters, which we
shall designate as TO, Tl’ oo sy Tn' To achleve the greatest possible
generality, we shall also establish certaln relations between the sym-
bols, these relations belonging to one of the types Rl’ R2, SR Rm.
For each type of relation R1 we fix the number k1 of related symbols
(1etters). We designate by K the maximal number among the numbers kl’
ceey km. The relations between the symbols are 1lntroduced in order to

take account of the case of complex letters whlch designate, for

-4] =

example, entire pharases in ordlnary language. In that case the compo-
sition of the phrase (letter) may include indications of the relative
positioning of information (other letters) which has direct relation
with the letter in question (say, information which must be brought in-
to consideration in the following step of the algorithm). The limiting
of the number of related symbols depends on the boundedness of the in-
formation contained in each letter (otherwise the letter cannot be con-
talned entirely in the active zone and it must be divided into individ-
ual portions).

Let us assume that all the relations
in which any given letter can occur are or-

dered 1n some way and numbered, and that

the total number of such relations is
bounded by the same number s. We shall use

circles to designate the letters, intro-

ducing when na2cessary numeration of these

Flg. 3.

circles with numerals written adjacent to

the corresponding clrcles. These numerals have no relations to the
type of symbol (letter) designated by the given circle. When necessary,
the symbol of the corresponding letter 1s written lnside the clrcle
which represents 1it.

Any relationship between sumbols (letters) can now be represented
as shown in Flg. 3.

The subscripts of P15 Pos ¢+ P ON this figure show the posi-
tion occupled by the relation in question in the ordered set of rela-
tions for the corresponalng (designated by the numbered circles? let-

ter. These subscripts (regardless of the cholce of the letters and

the form of the relation R) can take only the values 1, 2, 3, see, 8.

- 42 -

TR T T T T - -~ i . § v A -
3 "W‘" 2 — T
, : W M sl -

We can considerably simblify the writing of the information in
this diagram by adding to the number of letters TO, Tl’ 5 op0 o Tn s + K
+ m letters: s letters for the designation of the numbers of relations
in any given element (squares in Fig. 3), K letters for the designa-
tion of the numbers of relations with the letters for any glven rela-
tion R (triangles in Fig. 3), and m letters for the designation of the
Rl, R2, erals Rm relations themselves. If we denote all the new letters
by circles, then the information takes the form of a set of circles
connected between one another by paired bonds. Then tuere 1s no re-
quirement for any special numeration for the order of occurrence of a
letter in particular relations, since, as shown in Fig. 3, all the let-
ters related with any single letter will inevitably be different.
Thereby the relations in which a given symbol (letter) occurs are num-
bered automatically--by the numbers of the sumbols (letters) with
which the given symbol 1s related.

Thus, finally, the information 1n the written algorithmic diagram
1s represented by an arbltrary finite set M whose elements are the
fixed letters Ty, Ty, ..., Ty (N > 1) where in the set M each of the
letters T2’ T3, oo g TN can occur any number of times, and, in addi-
tion, 1n the set there occurs each time one and only one of the let-
ters Ty or T;. On this set there 1s established a paired relatlon (cer-
tain letters " join" pairwise with one another) so that the following
condition "a" is satisfied: all the letters connected with any single
letter of the set M are palrwise different.

In other words, the information is in the form of some one-dimen-
sional complex (1linear undirected graph), whose vertices (designated
by the circles) are identifled with the letters TO, Tl’ w's sy TN and
the (undirected) lines connecting certain pairs of vertices are identi-

fled with the palred relations between the letters described above.
- 43 -

G —
L]

The requirement for the occurrence in the complex in question

(the set M) of one and only one vertex identified either with the let-

ter T, or with the letter T, 1s assoclated with the necessity for the

0 !
establishment of the reference point (center of the active zone) of

the information, and one of these letters (we assume that 1t is the
letter To) 1s required for the compleses designating the information
whose processing is not yet completed, and the other (in the present
case the letter Tl) 1s required for the complexes designating the ter-
minal information from which the final results of the operation of the

algorithm must be extracted.
The vertex of the informational complex S, which is identified
with the letter To or Tl’ i1s termed the initial vertex of the complex.

The active zone of the complex S is the subcomplex of the complex S

which consists of the vertices (letters) and the lines (relations) be-
longing to the chalns of length A < P contalning the initial vertex,
where P 1s a number which 1s determinate, fixed for the given algo-
rithm. Here and hereafter we use the term chain to designate any fi-
nite sequence of vertices Bl’ B2, o ™ Bp such that any two nelghbor-
ing vertices in this sequence are connected by lines; the number of
all these vertices (equal to p— 1) 1is termed the length of the chain,

and these lines themselves are also included in the chain in question.

The ensemble of all the vercvices of the actlive zone of the infor-
mation complex which are connected with the initial vertex by chailns
of length P and are not connected with it by chalns of lesser length
1s termed the boundary of this zone. The complex 1s called bound if an-
y two of 1ts vertices can be ccnnected by a chain. The ensemble of ver-
tices and lines lylng beyond the limits of the active zone of the com-

plex S is termed the external portion of the complex.

YT

T S N, ey res M e ~—2 e o0 0 e i R = 2% M
.

Two complexes are termed mutually isomorphic if between thelr ver-
tices we can establish mutually single-valued correspondencc, where
the corresponding vertices are designated by the ldentical letters To,
Tl’ S0 O TN’ and corresponding palrs of vertices are either simultane-
ously connected or simultaneously not connected to one another. Mutual-
ly isomorphic complexes are in essence identical, and differ perhaps
only in the method of theilr representation (position of the vertices
on the plane, for example).

In view of the boundedness of the total number of vertices in the
active zone of the information complex of any glven algorithm and the
boundedness of the number of letters TO, Tl’ et TN for any glven al-
gorithm A, there exlsts only a finite number of different (pairwise
nonisomorphic) active zones Ul’ U2, olehelly Ur' Starting from this, the
rules for thelr processing can be given by the simple correspondence

table Uy = W, (L=1,2, ..., r).

i

The complexes appearing ln the right side of this table must have
subcomplexes which are lsomorphic to the boundaries of the correspond-
ing active zones Ui’ and these isomorphisms musé be flxed once and for
all. In other words, to each vertex lying on the boundary L(Ui) of the
active zone Ui there must be assoclated a completely determined vertex
of the complex W, (1 =1, 2, ..., r). Each of the complexes W, must
satisfy all the conditions imposed above on the information complexes;
in particular, it must have one and only one initial vertex, designat-
ed by the letter TO or by the letter Tl'

With the ald of the constructed correspondence table, we deter-
mine the operator RA which performs the direct processing of the infor-
mation complex at each step of the operation of the given algorithm A.
In the considered information cemplex S (initial and intermediate), we

find the initial vertex. Drawing from it all possible chains of length
- 45 -

P, we construct the active zone and determine its boundary L(U).

Further, we find that (single) active zone from the left side of
the correspondence table which i1s isomorphic to the found active zone
U. As a result of the propertles defined above of the information com-
plexes (in particular the property "a") and the connectedness of the
two complexes U1 and U with one another, only one isomorphism is possi-
ble. This makes possible unique identification of the vertices lying
on the boundary L(U) of the active zone U with the corresponding ver-
tices, for the isomorphic case, lying on the bound%ry L(Ui) of the ac-
tive zone Ui and, using the identification of the vertices employed in
the correspondence table, also with certain vertices of the complex Ui'

Now it 1s easy to remove all the interior, i.e., not lying on the
boundary L(U), portion of the active zone U and replace it by the sub-
complex W'i of the complex W1 which includes all the elements of this
complex except 1ts vertices which were identified earlier. Thus, we
"insert™ into the information complex in question the new complex Wy
in place of the internal portion of its active zone while retalning un-
changed the boundaries of the active zone.

Since in the complex W'i the initial vertex occuples a new posi-
tion with relation to the boundary of the previous active zone, the
new active zone, determined after the insertion, will have a different
boundary. The new information complex S' obtained after such an inser-
tion then will be the result of the applicatlion of the direct proces-
sing operator R.A of the algorithm A in questlion to the original infor-
mation complex S. The direct processing operator 1s applied to the
resulting information complex untill obtaining a complex whose initial
vertex 1s designated by the letter T1 and not by the letter To.

Such a complex is termed a terminal complex and its maximal bound

subcomplex, containing the inlitial vertex Tl, is considered to be the
- 46 -

"'ﬂ—‘- . PR - — g - I "W

TP T~ e —_—

solution, i.e., the information complex obtalned as the result of the
action of the algorithm A on the initial (input) information complex
SO' If, however, the algorithm continues operation without end without
obtaining a terminal complex at any step, then, Jjust as 1n the case of
the normal algorithms, we take i1t that the algorithm in question is
not applicable to the gilven initial complex SO.

We can expand the definition of the algorithm so as to permit in
the right side of the table correspondences of a complex without an in-
itial vertex. The application of the substitution with such a right
slde leads to natural termination of the algorithmic process, since
the determination of the active zone and the further substitution be-
come impossible.

However, since the terminal complex (in the sense defined above)
does not appear, agaln in thls case the algorlithmic process must be
considered to have terminated without result and the algorithm is con-
sldered inapplicable to the corresponding initlial information complex.

Still another type of unsuccessful termination of the algorithmic
process 1s possible in which the correspondence table does not contailn
all forms of actlive zones which are possible for the\given algorithm.
In the case when the information complex reaches a statc in which al-
though there is an initial vertex deslgnated by the letter TO none of
the substitutions of the correspondence table are applicable, 1t 1s al=-
so considered that the algorithm is not applicable to the correspond-
ing initial information complex.

We must make still one more remark on the nature of the substitu-
tions in the correspondence table. If special measures are not taken,
as a result of the substitutions the condition "a" introduced above
may be violated; this condition must be satisfied by all the informa-

tion complexes we are considering. In order to avold such a distortion

- 47 -

of the information, it 1s clearly sufficlient to assume that any vertex
of the arbitrary complex Wi from the right side of the correspondence
table, which in the process of "insertion" 1s identified with some ver-
tex g of the boundary of the active zone 1n the complex wi, can be con-
nected by lines only with the initlal vertex and with the vertices des-
ignated by the same letters as the vertlices with which there 1s con-
nected by lines in the complex U1 the vertex corresponding to the ver-
tex g.

This condition (we term it "b") does not violate the generality
of our considerations. The boundary used in performing the "insertion"
operation 1s defined quite arbitrarily. If we included in the boundary
not only those vertices which are removed from the initlal vertex by
the distance P (connected with it by chains of length P but not by
chains of lesser length) but also the vertices which are removed from
it by the distance P — 1, then, establishing the isomorphism of the
boundaries 1n the compleses U1 and w1 we would obtain, as 1t 1s not
difficult to see, a stronger limitation on the correspondence table
than the limitation imposed by the condition "b".

Careful analysis of the description of the Kolmogorov-Uspenskly
algorithmic diagram shows that in form this dlagram to a very signifi-
cant degree 1s reminiscent of the operation actually performed by a
man when he processes information supplied to him externally 1in accord-
ance with the particular rules of an algorithm which he has memorized.
The developers of thlis diagram took special mrasures not to lose gener-
ality in the nature of the transformation performed. Nevertheless,
they demonstrated that the dlagram which they described gives the pos-
sibility of constructing only normallzable algorithms. This result can

be consldered confirmation of the normalization principle formulated
in §2.
- 48 -

§4. OT YEORETICAL ALGORITHMIC SYSTEMS

L“auorica%ly the first algorithmic system which recelved fairly
complete and thorough development was the system based on the use of
constructively determinate arithmetic (integral) functions which were

given the name recursive functlons. The use of these functions 1in the

theory of algorithms is based on the ldea of numeration of the words
in any alphabet by means of the sequential natural numbers. This numer-
ation can be accomplished most simply by arranging the words in in-
creasing order of thelr lengths, and arranging words having the same
length in an arbilrary (lexicographic, for example) order.

After numeration of the input and output words in an arbiltrary al-
phabetic operator, this operaFor i1s transformed into the operator y =
= £(x) in which both the argument x and the function y itself take non-
negative integral values. The function f(x), of course, can not be de-
fined for all values of the argument X but only for certaln values of
X which constltute the domain of definition of this function. Such par-

tially defined integral and shole-valued functlons are usually termecd

arithmetic functions for brevity.

Among the arithmetlc functions we separate the following particu-

larly simple functions which we shall term elementary arithmetic func-

tions: the function identically equal to zero (defined for all whole
ke n

nonnegative values of the arguments); the identity functions f(xi) =

= Xy, which repeat the values of their arguments; the direct succes-

sion function f(x) = x + 1, which also defined for all whole nonnega-

tive values of 1ts argument.

Using as original functions the elementary arithmetic functions
Just listed, we can with the aild of a small number of general construc-
tive techniques ccnstruct ever more and more complex arithmetic func-

tions. In the theory of recursive (constructive arithmetic) functions

- 49 -

three operations are of particularly great importance: superposition,

primitive recursion and least root operations.

The operation of superposition of functions 1nvolves the substitu-

tion of some arithmetic functions in place of the arguments of other
arithmetic functions. Thus, from the already known éunctions ve can
construct new arithmetic functions. For example, performing the super-
position of the functions f(x) = O and g(x) = x + 1, we arrive at the
function h(x) = 1. With the superposition of the function g(x) with it-
self there appears the function p(x) = x + 2, etc.

The operation of primitive recursion makes 1t possible to con-
struct an n-place arithmetic function (function of n arguments) from
two given functions, one of which 1s (n — 1)-place, and the other is
(n + 1)-place. the method of this construction is determined by the
following two relations:

Fx, .o % 0) =g(&n ... X,) (6)
Fxy xee ooy x, %, + 1) =h(xy %5, ..., X, B), (7)
where y = f(xl, cees Xp g xn):|§ 1s the function belng determined
and g and h are the given functlons.

For a proper understanding of the operation of primitive recur-
sion we must note that every function of a smaller number of variables
can be considered as a function of any larger number of variables. In
particular, constant functions, which it is natural to consider as
functions of a zero argument, can 1f desired by considered as func-
tions of any finite number of arguments.

As an example, let us consider how the operation of primitive re-
cursion is applied to construct from the elementary arithmetic func-
tions the two-place summation function f(x,y) = x + y. This function

is determined with the aid of the identity function g(x) = x and the

direct succession function h(x) = x + 1
- 50 -

f(x.0) = x = g(x);
[xoy+ D)= (x+y)+ 1 =h({(x y)).

We can construct similarly the product, exponential, power and
other widely known arithmetic functions.

The functions which can be constructed from the elementary arith-
metic functions using the operations of superposition and primitive re-
cursion any (finite) number of times in any sequence are termed the

primitively recursive functlons.

The majority of the arithmetic functions are primitively recur-
sive functions. Nevertheless the primitively recursive functions do
not include all the arithmetic functlions which can be defined construc-
tively. In the construction of all these functions use is made of oth-
er operations, in particular the least root operation.

The least root operation makes 1t possible to determine a new a-

rithmetic function f(xl, ceey xn) of n variables with the ald of the
previously constructed arithmetic function g(xl, vees X y) of n + 1
variables., For any given set of values of the variables X, = Qys ooy
x, =a as the corresponding value f(al, oy oo an) of the function
being determined f(xl, Xps ooes xn) we take the least integral nonncga-
tive root y = B of the equation g(al, vy O y) = 0. In the casc of
nonexistence of integral nonnegative roots of this equation, the func-
tion f(xl, Xps eoes xn) 1s considered indeterminate for the correspond-
ing set of values of the variables. Usually 1t 1s also presumed that
the function f(x,, Xps oo xn) is indeterminate on the set x; = a,,

Xp = Qpy eeey X = Qpy if with the existence of the least root y = B
of the equation g(al, Qs eoey Oy y) = O for at least one integral
nonnegative value of y = v which satisfies the relation 0 < vy < p-1,

the function g(al, Qpy eees Op,y y) 1s indeterminate.

- 51 =

F s) T——— ——— _.‘m

-

The arithmetic functions which can be constructed from the elemen-
tary arithmetic functions with the ald of the operations of superposi-

tion, primitive recursion and least root are termed partial recursive

functions. If these functions are in addition everywhere determinate,

then they are termed general recursive functions.

In this definition, Just as in the definition of the primitive re-
cursive functions, provision is made for the possibility of performing
all admissible operations in any sequence and any finite number of
times. There exists, however, the result of Kleene [41] whic, makes it
possible to obtain any partially recursive function from two primitive
recursive functions with the use of sequential application to them of
a single least root operation and a single superposition operation.
This result can be formulated more exactly as:

for any partial recursive function f(xl, vooy xn) there exlist two
primitive recursive functions g(xl, g xn,y) and h(x) such that the
function £(x, ..., xn) can be obtained from them in the form f(x,,
£ s i xn) = h (uy[g(xl, vees X y) = 01]), where by 18 the least root
operator. Here the function h(x) can be chosen once and for all, re-
gardless of the cholce of f.

The partial recursive functions are the most common class of con-
structively definable arithmetic functions. They include, in particu-
lar, all the arithmetic functions which can be given in the form of
finite recursive schemes of arbitrary form. By finite recursive scheme,
here we understand any finlte system of equalities r = s, where r and
s are any finite (containing a finite number of symbols) expressions
constructed from the known primitive recursive functions of unknown
functions with numerical and literal arguments, where the values of
the unknown functions for any given values of the arguments must be de-

termined uniquely after a finite number of steps (depending on the
- 52 -

T Lﬂ o v ey i 0

selection of the values of the arguments) as a result of the applica-
tion of two rules. The first rule (substitution rule) consists in the
substitution into some one of the given equallties in place of one of
the arguments some one of its numerical values. The second rule (re-
placement rule) makes it possible to use an equality of the form x =
= f(xl, Xos sees xn), where x, X,, X5, ..., X, are numbers for the re-

placement by the quantity X of some occurrence of the quantity f(xl,

Xps eoes xn) in one of the equalities r = s.

It 1s found that all the general recursive functions and only
such functions can be represented in this manner. This situation makes
it possible, following Erbran and Godel, to define the general recur-
sive functions as functions represented by the finite recursive
schemes of the form described above.

If, retalning the condition of single-valuedness, we do not re-
quire the definability of the values of the functions appearling in the
scheme for all values of the arguments, wé can represent the partial
recursive functions by similar schemes. It 1s of essence that no recur-
sive definitions (using finite schemes) make it possible to go beyond
the 1limit of the class of partlal recursive functions.

After accomplishing the numeration of the input and output words,
any normal algorithm can be realized in the form of a partlal recur-
sive function. Conversely, any algorithm which 1is realizable with the
ald of the partial recursive function 1s equivalent to some normal al-
gorithm. Thus, we can draw the following important conclusion.

An algorithm is normalizable when and only when 1t can be real-
ized with the aid of the paitial recursive function.

This proposition shows that even on the basis of the arithmetic
(numerical) approach to the theory of algorithms there is no departure
from the class of the normalizable algorithms.

- 53 =

E— e S p——— ‘ T

i;‘

£

- : | £ oun

Let us consider two other approaches to the theory of algorithms
proposed in 1936 by Post [63] and Turing [73].

In the algorithmic system proposed by Post, the input and output
information 1s represented in the standard binary form, while the al- "
gorithm 1s in the form of a finite ordered set of rules termed orders.

For the writing of the input, output and intermediate information use
is made of a hypothetical endless information tape which 1s divided in-

to individual cells, in each of which there can be located only a sin-

gle letter (digit O or 1). Those cells in which ones are written are

termed signed and those 1n which zeros are written are termed unsigned.
At any instant of operation of the algorithm only a finite number of
cells can be signed. '

The operation of the algorithm is accomplished in discrete steps,
in each of which there 1s performed one of the orders which constitute
the algorithm. To each step there corresponds a deflnite active cell
on the information tape. Some initlal cell 1s fixed as the active cell
for the first order. Further changes of the location of the active
cell on the tape must be provided for in the algorithm itself. The or-
ders which constitute the algorithm can belong to one of the following
six types.

First type. Flag the active cell of the tape (write one in it)
and go to'the performance of the 1-th order (i can be any number from
the numbers used for the numeration of the orders of the algorithm).

Second type. Erase the flag of the active cell (write zero in it)

and go to the performance of the 1-th order.

Third type. Shift the active cell one step to the right and go to
the performance of the i-th order.

Fourth type. Shift the active cell one step to the left and go to

the performance of the i-th order.

- 54 -

T T N, T R I . £ T By —y
»

Fifth type. If the active cell is signed (one 1s written there),
then go to the performance of the j-th order, and if the active cell
1s not signed (zero written there), then go to the performance of the
i-th order.

Sixth type. Stop, termination of operation of the algorithm.

Algorithms composed of any finite number of rules of the type des-
cribed are called Post algorithms. It has been shown that the Post al-
gorithms reduce to the algorithms realizable with the ald of the par-
tial recursive function, and, conversely, any partial recursive func-
tion can be represented by an algorithm of the Post system. Thus, we
can formulate the following proposition.

The class of all algorithms equivalent to the Post algorithms co-
incides with the class of all normalizable algorithms.

The algorithmic scheme proposed simultaneously by Post and Turing
[73] 1s quite close to the scheme just described. In the Turing scheme,
which 1s customarlily termed the Turing machine, the information is al-
80 recorded on a bllaterally infinite information tape which is divid-
ed into individual cells. However, in contrast with the Post algorithm,
here an arbitrary finite alphabet 1s required for the writing of the
information. Each cell of the information tape serves for the wrlting
of a single letter. This letter can be surveyed by a sensitive element,
the so-called head of the Turing machine, which is capable of displace-
ment along the information tape in both directions. The head of the
Turing machine can be 1n a finite number of different states 15, dp»
ceey Q,, CaN print in the surveyed cell any letter X1s Xps +ee X and
can shift to the right or left along the information tape by one cell.

The writing of the algorithm realized by the Turing machine 1s ac-
complished with the ald of the operating program of this machine,

which is a set of five symbols of the form Xiqixqusp° The

- 55 =

- SR e

written-out group of five symbols designates that $he Turing machine |
head which 1s in the state qJ and senses the letter Xy recorded on the
tape will print in place of this letter the new letter x, (which can

in a particular case coincide with the previously recorded letter xi),
transfers to the new state Q. (which also can coincide with the previ-
ous state) and makes a shift along the tape of the magnitude sp, equal

to 1.

The original scheme of the Turing machine was intended for the
writing out o. the values taken by an arbitrary single-place partial
recursive function with values of the argument equal to 0, 1, 2,
In this case, of course, the Turing\machine must operate infinitely
long. We can construct a Turing machine which computes the values of
any & priorl given partial recursive function. It 1is advisable, how-
ever, to modify the original scheme of the Turing machine described a-

bove. Let us assume that the last symbol s_ of the group of five sym-

bols describing the operation of the Turinz machine can take, in addi-
tion to the values t1 introduced above, a third value--"stop machine".
With this addition the Turing machine is converted into an ordinary al-
gorithmic system. It elther processes the input word p initlally writ-
ten on the tape infinitely long or after a finite number of transforma-
tion steps 1t stops. In the first case 1t 1s presumed, as usual, that
the algorithm realized by the machine is not applicable to the input
word p. In the second case the information remaining on the tape at

the instant the machine stops 1s taken as the output word into which
the machines transforms the given input word p, In this case, of
course, 1t 1s necessary to have in the alphabet used for the recording

of the information on the tape a speclal empty word to designate those

cells in walch no information is written.

- 56 -

Borwmome Lla-r Givie — ’ — |

We can show that all algorithms which are realizable with the aid
of the described modificaticns of the Turing machlnes are normalizable
and, conversely, any normalizable algorithm can be realized with the
ald of a Turing machine specially constructed for this purpose. Making
use of the sriting of the programs of operation of the Turing machines
and of their input words in some standard alphabet, we can construct

a universal Turing machine by exactly the same method used in con-

structing the universal normal algorithm (§2). Giving the universal

Turing machine the representation of the program of any given Turing

machine M and the representation of any input word p, we obtain the
representation of the output word g into which the machine M trans-
forms the lnput word p. If, though, the algorithm realized by the mach-
ine M is not applicable to the word p (the machine M works infinitely
long on its transformation), then the algorithm realized by the univer-
sal Turing machine also 1s not applicable to the word formed from the
representation of the word p and the program of the maching M.

Thus, in spite of the considerable qualitative difference, all
the described algorithmic systems lead, in essence (with an accuracy
to equivalency), to the same class of algorithms. This conclusion is
still another confirmation that the modern theory of algorithms em-
braces an extremely broad class (if not all) of constructively definab-
le alphabetic operators.

§5. THE CONCEPT OF ALGORITHMICALLY INSOLUBLE PROBLEMS

Every algorlithm is the method of solution of some mass problem
which can be formulated in the form of the processing not of one, but
an entire set of input words into the corresponding output words.

Since both the condition and the solution of any problem can be ex-
pressed in the form of individual words, every algorlithm can be consid-

ered as a universal method for the solution of an entire class of prob-

lems. - 57 =

»~
L]
’

A detalled analysis shows that there also exist those classes of
problems for whose solution there is not and can not be a single uni-
versal technique. The problems of ;he solution of this kind of problem
are termed algorithmicly insoluble problems. However the algorithmic

insolubility of the problem of the solution of problems of a particu-
lar class does not at all indicate the impossibllity of the solution
of any specific problem of this class. The question concerns the impos-
s8ibility of the solution of all problems of the given class by the
same technique.

For a better understanding of the problem of the algorithmic ine-
solubllity we shall present examples of algorithmicly soluble and algo-
rithmicly insoluble problems.

A typlcal example of an algorithmicly soluble problem is that of
the proof of i1dentities 1n cordinary algebra. For simplicity we shall
limit ourselves to the cases when the identities are constructed from
rational numbers and letters (designated variables) with the aid of
the addition, subtraction and multiplication operations. The following
general technique for the solution of this problem is well dnown from
the school algebra course: using the distributive way for multiplica-
tion, we remove the parentheses in the right and left sides of any giv-
en ldentity and perform the reduction of like terms in accordance with
well known rules. After accomplishment of all these transformations,
both the left and right sides of the original identity are transformed
into polynomials. The id~ntity will be valid when any only when these
polynomials ldentically coincide with one another. In other words, the
validity of the ldentity means that after the transfer of all the
terms of the transformed ildentity into one side these terms mutually
cancel, the result being the conversion of the ldentity into the trivi-

al identity O = 0.
- 58 -

D e S P e o i e -~ . e

(U — Lau : — : E—

Thus, the identity problem in elementary algebra 1is algorithmicly
solvable=-=there exists a single constructive technique which makes 1t
posslible after a finite number of steps to decide whether any fiven ~e-
lation is an identity. We can, however, construct examples of such al-
gebraic systems in which the identity problem is an algorithmicly in-
soluble problem. As such algebralc systems we might select, for exam-
ple, the semigroups or groups given by systems of generating elements
and defining relations. Examples of semigroups with insoluble ldentity
problem were first found by Post [64] and corresponding examples for
groups were found by Novikov [60]. '

Without writing out the defining relations explicitly, we shall
clarify the essence of these examples. Let X1s Xos eees X be letters
of some finite alphabet. The set of all words in this alphabet, includ-
ing the empty word e, 1s termed a free semigroup with the generating
elements X9 Koy eeey X if for the arbitrary pairs of words p, q
there 1s introduced the multiplicatlion operation amounting simply to
the suffixing of one word to the other. We agree to designate the free
semigroup with generaping elements Xys Xps eees X by F(xl, Xps oo
xn), and the result of multiplying the word p by the word g we desig-
nate by pq. '

In the free semigroup we can introduce any set of defining rela-

tions, which are formal equallties between two nonidentical words:

Py = Q4 (1 =1, 2, ...). Two words in the free semigroup F with the
given system S of defining relations are termed identlcal, or mutually
equivalent, i1f one of them can be obtalned from the other by an arbl-
trary number of substitutions into the second word of the right sides
of the defining relations in place of the left and, conversely, the
left in place of the right. For example, in the semigroup with the sys-
tem of generators (x,Yy) and one defining relation xy = yx the words

- 59 -

a= r.-r-_“

P = xxy and q = yxx are mutually identical since the first word can be
obtained from the second as the result of two subs?itutions of the h
form described above: Q = yXX =+ XyX = XXy = p. With the reverse substi- |
tution, the chain of substitutions written above can be read in the re-
verse direction, which makes poss}ble not only the transformation of
the word g into the word p but also of the word p into the word g.

The identity problem of words for the semigroups is formulated as

follows.

Assume that in the arbitrary free semigroup F with a finite num-

e

ber of generators there is given any system of defining relations S
consisting of a finite number of relations. We are required to find
the single constructive technique which makes it possible after a fi-
nite number of steps to decide whether any two given words of the semi-
group F with the system of defining relations S are identical or non-
identical.

For some systems of defining relations the problem formulated is
solvable; however, as Post [64] has shown, there also exist such sys-
tems of defining relations for which the problem of the identity of

the words 1s algorithmicly insoluble. This does not mean, of course,

impossibility of establishing the identity or nonidentity of any fixed
specific pair of words. There does not exist a single technique for
the establishment of the identity of any pair of words, similaf to the
technique described above for the proof of the valldity or nonvalidity
of any relation in elementary algebra.

The problem of word identity for groups in its basic features co-
incldes with the corresponding problem for the semigroups. The free
group G with the generating elements X1s Xps eeey X i8 constructed as

the ensemble of words composed from the letters Xys Xos eeey X and

the "inverse" letters xi'l, xé-l, coes xg'l. In this case two mutually
- 60 -

TR N I TR T : ecag—— -

inverse letters standing side by side cancel one another (become equiv-
alent to an empty word)
X maix - (8)

In the determination of the identity of two words in a g:ioup with
the system of defining relations S, we must take account not only of
the relations appearing in this system but also the relations of the
form (8). Just as for the remigroups, the word identity problem for
groups which are specified by a finite number of generating and defin-
ing relations is algorithmicly insoluble in the general case. Examples
of groups with insoluble word identity problem were first constructed
by Novikov [€0].

How can the algorithmic insolubility of a particular problem be
proved? The classical example of such an insoluble problem is the prob=-
lem of the recognition of the selfapplicability of algorithms. For
the exact formulation of this problem we shall treat only normal algo-
rithms in alphabets consisting of no less than two letters. With this
assumption we can, without losing generality, stipulate that some let-
lers of the alphabet of any algorithm with which we will be concerned
will be identified with the two letters (0 and 1) of the ctandard bina-
ry alphabet. From the‘gssumed condition, for any algorithm A consid-
ered, 1ts representatfon AY in the standard binary alphabet can be con-
sidered as the input word of this algorithm. If the word Al appears in
the domain of definition of the algorithm A, then the algorithm 1s
termed selfapplicable, otherwise it 1s termed nonselfapplicable.

Both selfapplicable and nonselfapplicable algorithms exist. An
example of the selfapplicable (normal) algorithm is the so-called 1i-
dentlty algorithm in any alphabet %, which contains two or more than
two letters. By definition this algorithm is applicable to any word p

in the alphabet ¢ and transforms any input word into itself. An
-6l -

example of the nonselfapplicable algorithm is the so-called zero al-
gorithm in any finite alphabet §. This algorithm is given by a scheme

containing the identity substitution —+ y (where y is any letter of the
alphabet D). By its very definition it is not applicable to any input

word, and this means that it 1s not applicable ot 1ts own representa-

tion.

The problem of the identification of the selfapplicability of
the algorithms amounts to finding a single constructive technique
which makes it possible, after a finite number of steps using the
scheme of any given algorithm A in some fixed algorithmic system (for
example, in the system of normal algorithms), to recognize whether the
algorithm A 1s selfapplicable or not.

If we consider that the normalization principle formulatéd in §2
is valid, we can assume that the single constructive technique in ques-
tion 1s none other than the normal algorithm B, defined on any word p,
which is the representation of the arbitrary normal algorithm A and
which transforms this word into two different fixed words qQq and s de-
pending on whether the algorithm A is selfapplicable or not(the word
q, 18 the code of the word "selfapplicable" and qy 1s the code of the
word "nonselfapplicable").

On any input word 1 which is not tﬁe representation of any (nor-
mal) algorithm, the algorithm B also must be defined. Actually, other-
wise, not obtaining any result after some number (sufficiently large)
of steps of operati-n of the algorithm, we would not know whether the
word 1 1s the representation of a selfapplicable or nonselfapplica-
ble algorithm. It is clear also that the result of the application of
the algorithm B to any word which is not the representation of an algo-
rithm must be different from the word qQ, and also from the word Q-

Let us assume that the algorithm B with the indicated properties

- 62 -

exists. In this case there exists the normal algorithm C in the same
alphabet %, as the algorithm B, defined on all those and only those
words in the alphabet %, which are the representations of nonself-
applicable algorithms (we recall that from the definition itself of
the algorithm B, the alphabet Z includes in 1tself the standard binary
alphabet).

) Actually, let us construct the normal algorithm D in the alphabet
X, whose domaln of definition consists of only the single word Qpe Such
an algorithm can be given, for example, in the form (normalized) of
the superposition of two normal algorithms D1 and D2, the first of
which 1s given by a scheme consisting of the single substitution Qo =+,
while the second is given by a scheme consisting of substitutions of
the form Xy = Xy, where Xy runs through all the letters of the alpha-
bet 2. It 1s clear that the first algorithm transforms into an empty
werd only the word Ap s while the domain of definition of the second al-

: gorithm conslsts only of an empty word. Therefore the domain of defini-
tion of the superposition D of the algorithms D1 and D2 will consist

« only of the word Ao which we require.

After constructing the algorithm D, forming the superposition of
it with the algorithm B, and normalizing this superposition, we arrive
at the normal algorithm C in the alphabet X, whose domain of definition
consists of all those and only those words in the alphabet ¥ which are
forms of nonselfapplicable algorithms. However, thls property of the
algorithm C is intrinsically contradictory, since the algorithm C can-
not be eilther applicable or nonapplicable to its own representation cY,

Actually, in the first case the algorithm C would be applicable
" to 1ts representation and therefore would be selfapplicable. But this

would contradict the fact that as a result of its construction the al-

gorithm C must be applicable only to the nonselfapplicable algorithms,
- 63 -

— T e ———,

&

In the second case, being nonapplicable to its representation, the al-
gorithm C would belong to the rumber of the nonselfapplicable algo-
rithms. But then, by definition the algorithm C would have to be appli-
cable to its representation, since it is applicable to the representa-
tion of all nonselfapplicable algorithms. Consequently, the algorithm

C 1s selfapplicable.

Thus, the assumption on the algorithmic solvability of the prob-
lem of the recognition or selfapplicability leads to a logical contra-
diction and therefore i1s not valid, which proves the algorithmic unde-
cidability of this problem.

We have substantiated this conclusion only for the condition that
the algorithm normalization principle 1s valid. However, the nature of
the contradiction used for the proof of the algorithmic insolvabllity
of the problem of the recognition of the selfapplicability of algo-
rithms is in actuality more profound. The reader who is familiar with
the paradoxes of the theory of sets and of mathematlcal loglc willl eas-
1ly note that this contradiction has the same nature as the contradic-
tion in the known paradox of Russel which establishes the intrinsic
contradiction of the concept of a "set of all sets not containing it-
self as an element."

This circumstance leads to the conclusion that the algorithmic un-
decidabllity of the problem of the recognition of selfapplicability 1is
not a result of the narrowness of the modern exact concept of the algo-
rithm. If we were able to construct an exact concept of the algorithm
which includes certain nonnormalizable algorithms, then the problem of
the recognition of the selfapplicabllity of the algorithms would re-
main as before algorithmicly undecidable.

From the algorithmic undecidabllity of the problem of the recogni-

tion of the %elfapplicability of the algorithms, the algorithmic

undecidabllity of a whole series of other problems 1s developed. The
general method for these derivations amounts to the derivation from
the assumption on the existence of the algorithm which solves a partic-
ular problem Q of tPe existence of the algorithm which solves the prob-
lem of the recognition of the selfapplicabllity of the algorithms.
Since the latter 1s 1mpossible, the existence of the algorithm which
solves the problem Q also 1s 1impossible.

Using the genneral method, the algorithmic undecidability of a
set of different problems has been proved, including the general prob-
lems of the 1ldentity of words for groups and semigroups consldered a-
bove. We shall mention some other algorithmicly undecidable problems
whose undecidabllity has been established by this same method. One
problem 1s that of the recognition of the applicabllity of some algo-

rithm to a particular word. There can be constructed an algorithm A,
operating in some alphabet % for which there does not exist an algo-
rithm in the alphabet ¥ , and in any expansion of it, which transforms
into some fixed word those and only those words to which the algorithm
A is not applicable.

The problem of the construction of an algorithm which transforms
into the fixed word p all the words to which any given algorithm A is
applicable 1s, as it 1s not difficult to see, algorithmicly undecida-

ble; for its solution it is sufficient to construct the algorithm B
which transforms into the word p all words 1in the alphabet of the algo-
A

rithm A and to form the superposition of the algorithms A and B. We

stipulate that an algorithm annuls particular words it it transforms

them into the empty word e. The problem of the recognition of annul-
ment for aﬂy given algorithm A consists in the construction of the al-
gorithm B (in the same alphabet as A) which annuls all those and only
those words which algorithm A does not annul. This problem in the

- 65 -

m‘-‘k”“\ o —— e RRERRREE R
= e

general case 1s algorithmicly undecidable, namely: we can select the
algorithm A so that the algorithm B with the indicated properties can-
not be constructed.

Quite frequently in the proof of the algorithmic 1lnsolvability of
particular problems use is made of the Post [64] proof of the algo-
rithmic insolvability .. the following problem, which has been termed
the Post combinatorial problem. Assume that in the arbitrary finite al-

pabet ¥ there are given any finite systems S of palrs of words (pl,
ql), e [(pn, qn). We are required to construct a single constructive
technique which will make it possible for any such system S after a
finite number of steps to answer the question of whether we can con-
3truct a word pil p12 vos pik from the first elements of the pairs of
the system S such that 1t will coincide with the word q11 q12 IO qik,
constructed from the corresponding second elements of the same system
of palrs.

The problem of matrlix representability 1s also algorithmicly un-

solvable., For the formulation of this problem we stipulate that a ma-

trix is representable in terms of the matrix Ul’ U2, o Un if for

some finite sequence (generally speaking with repctitions) U, Uy
1 -2

1 of these matrices the product Ui U1 eleis Ui of all the matrices

k 1 -2 k

appearing in the given sequence coincide with the given original ma-

U

trix U. The representation problem consists in finding the general con-
structive technique by which, after a finite number of steps for any
matrix U and any finite system S of matrices, we would be able to know
whether the matrix U is r;presentable in terms of the matrices of the
system S or not.

We recall that the algorithmic undeclidablility of all the indica-
ted problems is proved on the assumption of the validity of the normal-

ization principle; however, as noted above, the nature of this

= L o
TR, e — > 3 o T

= .
E

undecidability is more profound .and, in a certain sense, 1s independ-

ent of this principle.

Manu -

script

Page [Footnotes]

No.

13 The word p is termed the inltlal segment of the word‘§ if
the word g has the form g = pr, where r is any word (1nclud-

ing, posslibly, an empty word).

Chapter 2
BOOLEAN FUNCTIONS AND PROPOSITIONAL CALCULUS
§1. CONCEPT OF BOOLEAN FUNCTIONS

Boolean (or switching) function is the term customarily given to
those functions for which-all the arguments, and the functions them-
selves, can take on only two values.

The role of the boolean functions in cybernetics is determined by
two basic characteristics. First, the boolean functions are a conveni-
ent apparatus for the description of the circuits of many information
converters constructed using the discrete principle, since with cur-
rent technblogy it 1s far easler to construct discrete elemcnts func-
tioning directly in the binary alphabet and not in some other alphabet.
Second, the boolean functions are sidely used in mathematical logic,
which 1s one of the foundations on which the automation of the complex
thought processes 1s founded.

The use, along with the usual variables which take on numerical
values, of the boolean variableéf which have only two possible values,
plays a significant role in the design of various kinds of practical
algorithmnic systems for programming on the electronic computers. The
boolean functions can also be used successfully for the solution of
certain general questions of the theory of algorithms, for example to
refine the concept of algorithmic complexity. The two possible value§
of the variable which figure 1n the definition of the boolean func-
tions can be designated arbitrarily. In practice, however, two nota-

tion systems are used most frequently. The first (for use of the

- 68 -

e il e SRS o oaree Y e e l m" | A - vy
= .
. » X fhdicaie, .

boolean functions in the theoiry of automata circuits) assigns to the
possible values of the boolean variables the notations O and 1. We
shall term the symbols introduced, Jjust as in the case of numerals, ze-
ro and one, considering that here the zero and one appear not as numer-
als, but only as convenient notations for the letters of the abstract
binary alphabet. In the future we shall assign these symbols several
properties which make it possible to consider them (with cne ~¥--ption)
as ordinary numerals (this 1s precisely the convenience of the nota-
tion system belng considered). But all such properties must be precise-
ly defined before use. We cannot, 1in particular, yét make use of the
properties of zero and one which result from the existence of the oper-
atlons of addition and multiplication for numbers, since we have not
yet defined these operations for these symbols.

In the second system of notation, the words "true" and "false"
serve as the notatlions for the two possible values of the boolean vari-
ables. This system of not:tion is used in mathematical logic, primari-
ly 1n the portion which 1s called propositional calculus. Its applica-
tion 1s assoclated with the circumstance that ln the propositional cal-
culus the boolean variables are interpreted as the propositional varil-
ables, consldered from the point of view of the truth or falsity of
the proposition.

In the present and three following rcections we shall make use of
the first system of notatlion without specifying this each time. When
it 18 necessary to make a transition from one system of notation to
the other, we stipulate that one corresponds to true and the zero cor-
responds to false (we could, of course, assume exactly the opposite
correspondence).

Let us consider the boolean functions o1 any finite number of ar-

guments. Of the number of arguments 1s equal to n, then it is customary

- 69 -

to term the corresponding function n-place. As a result of the fact
that each boolean variable can take only two values, the domain of def-
inition of any boolean function will of necessity be finite. It is easy
to see that the domain of definition of an n-place boolean function
can consist of a maximum of 2n different elements, which are all possi-
ble sets of values of its n arguments. We will usually order the argu-
ments of a glven boolean function by assigning them the numbers 1, 2,
.+s 5, N, In this case the set of values of the arguments is identifiled
with some cortege (finite ordered sequence) of zeros and ones. For ex-
ample, the set of values X, = 1, Xy = o, x3 = 0 of arguments of the
three-place boolean function f(xl, X5 x3) can be abbreviated in the
form of the cortege 100, and the set X, = o, Xy = 0, x3 = 1 can be
written in the form of the cortege 00l. In the future we frequently
shall term these corteges simply sets (here the arguments are always
numbered in a definite order--in the order in which they are encoun-
tered in the notation f(xl, Xos vees xn) corresponding to the boolean
function). The term boolean in application to a cortege (set) denotes
that the corresponding cortege 1s composed of zeros and ones.

Each cortege of length n, composed of zeros and ones (a boolean
cortege), can be identified with some vertex of an n-dimensional unit
cube having the corresponding coordinates. For the two-dimensional
case, when the n-dimensional cube reduces to a square, the method of
identification of the boolean corteges with the vertices is shown in
Fig. 4. As a result of the possibility of such identification, the
boolean sets (corteges) will sometimes be termed points.

In the present chapter we shall limit our-

) *
(o)) selves (with the exception of specially stipulated
(00) (0 5 cases) to the consideration of only those boolean
~ y functions whose domain of definition includes all
g. L]
- T0 -
-———-'—ﬁ"‘,—y-__- FAUERERRTT T i — :{“‘,

» - 3

sets of values of 1ts arguments. Thus, the n-place boolean function
must be defined at 2n different points. If we do not exclude the case
when a particular boolean function can be undefined on at least one of

the sets, then 1t 1s termed a partial boolean function. The consldera-

tion of the partial boolean functions is useful for the synthesls of
the circults of descrete automata. In the theoretical aspect there 1is
particular interest in the boolean functions which are everywhere de-
fined, the more so since in case of necessity every partial boolean
function can be redefined (generally speaking, by an arbitrary method)
on those sets on which 1t was not initially defined. Therefore, speak-
ing of the boolean functions hereafter (if not stipulated otherwise),
we wlll understand them to be these everywhere-defined functions.

We remark also that in the consideration of a particular boolean
function we shall consider the number of its arguments glven. The ne-
cessity for this stipulation 1s due to the possibility of treating ev-
ery n-place function as (n + 1)-place, (n + 2)-place, and in general
as an (n + k)-place function for any natural number k. Actually, for
example, the constant-function (equal identically to zero or one) can,
if desired, be consldered as a functlon of any number of arguments, ar-
guments of which it is in actuality, however, independent. Similarly,
we can to any function f(xl, Xps eoes xn) add any desired number of
new argunients Xn41? **9 Xpype ON which the values of the function actu-
ally does not depend. For this it 1s sufficient to assume that for all
sets of values of the variables X5 Xps eees Kooy the following equalil-

ty 1s valid

FQxn 2 cconXy Xk) = f 2y, Xn .. %)
We shall term the described operation of the conversion of the n-

place function into an (n + k)-place function the operation of formal

assignment of arguments. This operation is obviously applicable to any

- 71 =

functions (and not only boolean).

As we noted above, there are exactly 2" boolean sets (corteges)
of length n. These sets can be considered as the representations of
certaln whole numbers in the binary number system such that the set

Gy Qo eeey @ is i1dentified with the binary representation of the

.on=-1 . pi1=2
number al 2 + a2 2 R an-l

and 1 are considered simply as the usual numbers O and 1). We shall

2+ a (here the boolean values O

term this number the number of the corresponding set. The numbers of
the sets vary from zero (for the set consisting only of zeros) to
2" — 1 (for the set consisting only of ones). The number of the set
010 will be the number 0-22 + 1¢2 + 0 = 2; the number of the set 101
will be the number 1+2° + 0+2 + 1 = 5, etc.

Arranging the sets in columns one after the other in the order of
increase of their rmmbers and placing alongside each set the value of

the boolean function on this set, we obtain the value table of the

boolean function. Since on each set the function can take either of
two values (0 or 1) regardless of its values on the remaining sets,
for m sets we can deflne exactly o different (differing from one an-
other by their values on at least one set) boolean functions. Keeping
in mind the total number of sets for n variables (equal to 2n) defined

above, we come to the conclusion that the number of different boolean

functions of n arguments, which we shall designate B(n), is determined

by the equatlon

B(n) = 2™ (9)
With n = 1 the quantity B(n) 1s equal to 4, and with increase by
1 this quantity is squared: B(n+1) = (B(n))a. Thus, 1f the number of
single-place boolean functions 1s equal in all to 4, then the number
of different two-place (boolean) functions will be equal to 16, three=-
place to 256, four-place to 2562 = 65,000, five-place to 256u = 4
-7 -

T TR S TR v o~ m

million, six-place to about 16 trillion (16+10%") and so on. i
practical possilbilities of sorting all the booean functions are thus
limited to the three-place or at best the four-place functions.

Although every boolean function can be given in the form of 1its
value table, in the majority of cases of practical application of the
theory of boolean functions this method of specification is inconveni-
ent. Therefore, one of the primary tasks of our further constructions
will be the development of new and more convenlent methods of specify-
ing the boolean functions. In this connection, of particuiar 1mpor-A
tance are the boolean functions of one and two arguments, since, as
wi’'1l be shown later, with their ald we can represent any boolean func-
tions. Therefore, we shall make a more detalled study of the single-
place and two=-place boolean functions.

Of the four single-place functions ¢ (x) which can in general be
constructed, two functions are the constants O and 1 wnhlich are not ex-
plicitly dependent on X. Still another function simply repeats the val-
ue of its argument @(x) = x and therefore also is nct of inter: .. The
last, fourth, function, for which we introduce the speclal nota " u. -
or 1x, always has a value which 15 the oppositc to that of its . 1rpu-
ment: O = 1 and 1 = 0. This function ls termed inversion or ne;mtion.
The expression x (and also the expression 1x) 1is rcad as "negatlon x"
or "not x." In the theory of boolean functlons, and also in the appli-~
cations of this theory to the synthesis of automata circults, follow-
ing tradition, we shall make use of the notation X. In mathematlcal
logic (end of the present chapter and begimning of the sixth chapter)
and also 1; the practical aspects of the theory of algorithms (end of
the fifth chapter) 1t is for several considerations morc convenient to
use the notation 1 x.

Of the 16 different two-place boolean functions f(x, y) whlch in

-73 -

general can be constructed, six functions reducc to functions of a
smaller number of arguments. These are, first, again the two constant
functions (0 and 1), second, the two functions whlch recpeat the values
of some argument (x or y), and, third, two functions which are the ne-
gations of each of the arguments (x and y).

The ten remainlnyg functions f(x, y), which actuzlly depend on
both of thelr arguments, can be divided into pailrs such that the sec-
ond function of the pair is the negation of the first function (i.e.,
1t has on each set a value which is the opposite of the value of the
first function). In this case use 1s actually made of the single-place

boolean function X for the construction of the single-place negation

operation on the set of all boolean functions. The application of the

negation operation to any boolean function g can be treated as the sub-

stitution of the function in place of the argument of X Into the func-

tion X. Such a substitution of some loolean functions in place of the

arguments of other boolean functions (termed superposition of these

functions) will be widely used hereinafter for the formation of vari-
ous operations on the set of boolean functions (boolcan opecrations).
For the designation of the operations thus constructc, wce usually
make use of the notation of the boolean functions whlch gencrated
these operations. In our case g (or lg) will serve for the notatlion
for the negation of the arbltrary boolecan function g.

The separati on described above of the two-place boolean functlonc
into pairs (g, g) makes 1t possible to actually limit ourselves te the
description of only five functlons, which we select as the first cle-
ments of the pailrs 1ndlcated.

Let us begin the description with conjunction, also tcermed (logl-

cal) producc, or the logical AND operation. In mathematical logle 1t

1s customary to deslgnatc the conjunction of the variables x and y by

- 74 -

AT ., T R T - e A A T PR R

x &y or x Ay (we shall use the second of these notations). By defini-
tion, the conjunction X A y 1s equal to one when, and only when, both
of its arguments X and y are equal to one.

For the conjunction x A y to be equal to zero it is sufficient
that at least one of 1ts arguments (5 or z) become zero. These proper-
ties of the conjunction are completely analogous to all the propertiec
which the product xy would have if the cofactors composing it could

take on only two numerical values--0 and 1. This circumstance suggests

considering the boolean constants (0 and 1) as sort of "pseudo-numbers"

for which the multiplication operation is defined which possesses all
the properties of the usurl multiplication operation for the numbers
O and 1:

0.0=0, 0.1 =0, 1.0=0, 1.1 =1.

In the theory of boolean functions and in 1ts applications to the
theory of automata, it 1s convenient to take precisely thls point of
view. Moreover, in these cases we shall simply identify the conjunc-
tion operation with multiplication, both in name and in form of repre-
sentation. In other words, in place of the notation x A y we shall usc
the notation x.y, or xy, and also shall make use of the terms "prod-
uct.," cofactor" and all the properties of multiplication from conven-
tional elementary algebra. It 1s easy to understand that, as a result
of the coincidence of the definitions, multiplication in our case will
have all the general (satisfied identically) propertles of multiplica-
tion in conventional algebra (commutativity, associativity, and so on).
At the same time, the limitation on the set of possible values of the
quantities leads to the appearance for the logical multiplication
which we are consldering of some properties which conventional multi-
plication does not have. For example, in the case of logical multipli-
cation the identity relation xe¢x = X becomes 1lnvalid if in place of

-T75 =

-~ A e R ——— e e - = —_

the values 0 and 1 we substitute into thils relation other numerical
values of the quantity x.

Just as in the case of negation, multiplication (conjunction) can
be considered not only as a function, but also as an operation on the
set of all boolean function. For this purpose it 1s sufficlent in
place of the independent variables X and y to substitute 1n the pro-
duct xy two arbitrary boolean functions f and g: p = fg. Similarly, any

other two-place boolean function b(x, y) defines a two-place, or, as

it is usually customary to say 1ln algebra, binary operation on the set

of all boolean functlions, which we shall term and designate Jjust the
same as the corresponding function b(x, y). Of course, in this case
the independent variables X and y are replaced by the arbltrary bool-
ean functions f and g. Hereafter we shall use the described technique
for the introduction of new binary operations on the set of boolean
functions without detalled explanations.

The possibility of the interpretation of conjunction as conven-
tional multiplication suggests also looking for boolean analogs for
conventional (numerical) addition. In contrast with multiplication,
here there cannot be complete analogy, of course, since the equality
1+ 1 =2 in the case of conventional addition introduces a third quan-
tity (two) which differs from both zero and one. With the limitation
to only the boolean (binary) alphabet, the direct interpretation of
this fact 1s, of course, impossible. Therefore we can define two dif-
ferent (but incomplete) analogs of numerical addition for the boolean
quantities, setting the "sum" of two ones equal to elther one or zero.

The operation (two-place boolean function) which arises with the

first assumption 1s termed dis junction, logical addition, and also log-

ical (the so-called inclusive) OR. For the designation of this opera-

tion we fix the special symbol (disJunction sign) \/. Thus, the
- 76 -

TR I, MR ¢ e — 5

L4 -

——y -

disjJunction of the two quantities X and y (independent variables or
functions) will be designated as x V y. The quantities x and y them-
selves 1n thls case are termed the logical addends, or more frequently

the dis junctive t=rms.

The system of relations which completely deflnes the operation of
disjunction 1s written in the formoy 0 =0, 0yl =1, 1y 0 =11y =] ;
The first three relations are exactly the same as in the case of con-
ventional (numerical) addition, and only the fourth relation differen-
tlates logical addition from conventional. In view of the relatlons in-
troduced, the disJunction oi the two quantitles X and y 1s equal to ze-
ro when and only when both these quantitles become zero. If even one
of the quantities indicated takes the value 1, then this same value of
1l is taken by the disJjJunction itself, regardless of the value of the
other dlsjunctive term.

A more fortuitous analog of conventional (numerical) addition is
obtained in the case when the "sum" of the two ones 1is assumed to be
equal to zero. The operation which arises in this case (two-place bool-

ean function) 1s usually termed the non-equivalence operation, exclu-

sive OR, and also modulo two addition. The last term 1s assoclated

with the fact that this operation coincides with modulo two addition
as defined in number theory if the zero and one are considered as ordl-
nary numbers.

For brevity we shall term this operation simply addition and
shall use such terms as sum and addend by analogy with conventional ad-
dition. We shall use the usual (+) sign to designate the operation of
modulo two addition. In order to emphasize that we are not discussing
conventional addition, we will at times put a circle around this sym-
bol.

The operation of addition of boolean quantitles 1s defined by the

= 77 -

following four relations: 0+ 0 =0, 0+1 =1, 1 +0=1,1+1=0,
The first three of them are exactly the same as 1n the case of conven-
tional (numerical) addition (and the same as in the case of logical ad-
dition--disjunction), so that the specific nature of the operation in-
troduced 1s defined primarily by the fourth relation. With this same
relation there 1s assoclated the term for the addition operation, ex-
clusive OR , which is used in mathematical logic. If we interpret one
as true and zero as false, then the sum of two boolean quantities will
be true when and only when either the first or second quantity is true,
but not when they are both true. In the case of the loglcal sum (inclu-
sive OR) the sum is also true when both addends (disjunctive terms)

are true together. OR in this case does not exclude the simultaneous

truth of both terms, it does not separate the question of the truth of

the sum into two mutually exclusive cases, and this 1s the source of
the association of the term "inclusive" as applied to OR in the logl-
cal sum (disJjunction).

Still two more two-place boolean functions are the result of the

single blnary operation termed implication, or the operation of logl-

cal succession. We use the symbol O for the designation of this oper-

ation. Implication 1s defined by the following four relations:
020=1 0D21=1, 120=0,121=1]. In the implication x 2 y, in con-
trast with multiplication, disjunction and addition, the order in
which the terms are arranged 1s of essential importance. With a rever-
sal of this order the value of che implication changes so that X Dy
and y o x are two different boolean functions.

If we designate the two-place boolean function f(x, y) by the cor-
tege “0“1“20‘3)’ where o, 1s the value taken by thls function on the
set with the number 1(i = 0,1,2,3), then the implication x o y will

correspond to the cortege (1101) while the implication y 5 X corrc-
- 78 -

- -
." 3 -y o

sponds to the cortege (1011). We note at the same time that the prod-

uct, disjunction and sum of the varlables X and y, regardless of the

order 1n which these variables are written, are respectively the cor-
teges: (0001), (0111) and (0110).

From a consideration of all the corteges presented, it follows,
incidentally, that all five of the two-place boolean functions which
we have defined (product, disjunction, sum and two implications) are
pairwise different. It 1s easy to see that the cortege for the nega-
tion of any boolecn function is obtalned from the cortege for the func-
tion itself by replaclng all the zeros by ones and all the ones by ze-
ros. Using this rule, we can determine the cortege for negation of the
product Xy, negation of the disjunction XV y, negation of the sum
X + y, and the two negations for the implications X oy and ¥ 5 X.
These corteges wlll be respectively (1110), (1000), (1001), (0010) and
(0100).

It 1s easy to verify that, together with the five functions previ-
ously introduced, the five new functions (negations of the preceding
five) compose a system of ten palrwise different two-place boolean
functions. They all differ also from the constant-functions 0 and 1
and the functions x, y, X, y, considered as functions of the two vari-
ables x and y, since the latter functions are characterized by the cor-
teges (0000), (1111), (o0011), (0101), (1100), (1010) respectively.
Thus, we have written out all 16 of the two-place boolean functions
which can in general be constructed.

Let us make a few more remarks concerning the functions intro-
duced above. The function xy (negation of the product) which is charac-
terized by the cortege (1110) and the binary operation which is de-
fined by it are customarily termed Sheffer's stroke function. It is
easy to verify (using the deflnitions of negation and disJunctlon)

- 79 -

that the Sheffer stroke can be represented not only in the form of the
negation of the product Xy, but also in the form of the disjunction of
the negations x V y.

The negation of the disjunction x\ y--the so-called Pierce func-

tion--characterized by the cortege (1000), can be represented also in
the form of the product of the negations of the variebles X and y, i.e.,
in the form x . y. It is easy to sce that both the Sheffer stroke and
the Pierce function, similar to the product, disjunction and sum, are
symmetrlic functions, i.e., they do not change thelr values with permu-
tation of the arguments.

The negation of the sum x + y, termed the equivalence operation

or loglcal equlivalence possesses a similar property. For the designa-

tion of this function and also for the binary operation defined by 1it,

we use the speclal symbols ~ or = (equivalence symbol). The function

X + ¥y = X~y 18 characterized by the cortege (1001). The terms "equiv-
alence" and "nonequivalence" as applied to the functions x ~ y and x +
y respectively emphasize the fact that the first function 1s equal to
one when and only when the values of 1ts arguments are equal to one an-
other, and the second--when the values of its arguments are unequal.
The function (binary operation) of impilcation can be expressed
by disjunction and negation. It is easy to verify that x Dy =x Vy
and y D x = xV:y. Negation of an implication, also termed the inhibit
function, 1s easlly expressed by the product and negation: x Dy =

Xey, Yy OHX =X . y. Both implication and the inhibit function are ex-

amples of asymmetric boolean functions, since they change their values

with permutation of the arguments.
In conclusion we note that in reading formulas the conjunction

symbol A (or &) is pronounced as "and," the disjunction symbol V is

or," the sum sign + (or &) is read "plus," the implication
- 80 -

read as

P

sign D 1s read "implies," the equivalence sign ~ (or =) 1s read as e=-
quivalent," and the negation sign (or 1) is read as "not."

All the ten listed two-place boolean functions correspond to the
respectlve two-place boolean operations, which we shall designate and
name exactly the same as the functions which define them.

§2. BOOLEAN ALGEBRA

Boolean algebra will be termed the set of all (finite-place) booi-
ean functions considered together with the operations of negation, dis-
Junction and multiplication (conjunction) specified on them.

We shall nuse the letters u, v, w, ... (with or without subscripts)
to designate any elements of boolean algebra, l.e., in other words, an-
y boolean functions. One of the primary problems of boolean algebra 1s
the establishment of the identity relations of the form A(u,v,w, ...) =
= B(u,v,w, ...) where A(u,v,w, ...) and B(u,v,w, ...) designate formu-
las, i.e., expressions of boolean algebra, constructed from a finite
number of letters u,v,w, ..., the signs of the three operations of the
algebra, the boolean constants (0O and 1) and parentheses for the desig-
nation of the order of performance of operations.

The formulas must be constructed properly. In othecr words, they
must reduce to completely determinate boolean functions after the se-
lection of pa.'ticular boolean functions as values of the letters u,v,w,
... appearing in these formulas. We can give a rigorously formal defl-

nition of the properly constructed formula, introducible recurrently

using the rule: all the letters u,v,w, ... (with or without subscripts)
and the constants 0 and 1 are properly constructed formulas. If A and
B are properly constructed furmulas, then (K), (A)V(B) and (A):(B)

are also properly constructed formulas. A set of propcrly constructed
formulas is considered coincident with the set of all formulas which

can be obtalned as the result of sequential (multiple, generally spcak-

= G| -

,‘r‘s

d—

ing) application of this rule.

The introduction of each additional operation into the formula is
accompanled by the appearance of one or two palrs of parentheses. To
avold excessive cumbersomeness of fhe formulas, we somewhat expand the
concept of the rule for the construction of the formula, making it pous-
sible to drop some parentheses by analogy with the way this 1s done in
elementary algebra. To do this we introduce the rule on the priority
of operations: other conditlions being equal, negations are performed
first, then multiplication, then disjunction. When it 1s necessary to
perform operations in a different order, parentheses are required. In
addition, the negation sign written by a bar over an entire expression
would have had to have been written. It will also be established later
that the order in which like operations are performed which follow di-
rectly after one another 1in the formula 1s of no concern, so that in
this case the parentheses are again redundant and can be dropped. Fi-
nally, we recall that the multiplication sign between letters can be
dropped.

All the properly constructed formulas obtained as the result of
the described expansions will hereafter be termed simply tformulas, per-
mitting using in them in addition\to the letters u,v,w, ... any other
letters of the Latin alphabet.

There 18 a very simple general rule for the verification of the
correctness of the l1dentity relations in boolean algebra. The essence
of this rule amounts to the following.

Every formula A(u,v,w, ...) of boolean algebra can be considered

as the representation of some boolean function of the variables u,v,w,

..+ Actually, of we assign these varlables some constant values (6
and 1) then, using the relations which define the operations of nega-

tion, disjunction and multiplication (i.e., relations of the form

0 =1, 0Vv1=1 and so on), we can after a finite number of steps find
the value (O or 1) of the formula A(u,v,w. ...) for the selected val-
ues of the variables u,v,w, and thls then means that our formula
1s some everywhere-defined boolean function of the variables u,v,w,
It 1s easy to understand that the (identity) relation A(u,v,w,
.es) = B(u,v,w, ...) 18 valid in and only in the case when the formu-
las A(u,v,w, ...) and B(u,v,w, ...) represent one and the same boolean
function of the variables u,v,w, For the verification of the fact
of the indicated equality of the two representations it is sufficlent
to verify whether the values of these representatlions on all sets of
values of the variables u,v,w, ... colncide or do not coincide.
Thereby we have constructed a general algorithm, suitable of the
verification of the correctness of any ldentity relations in a boolean
algebra, since in view of the finiteness of the number of sets of val-
ues for any flnite number of sets of the boolean varlables the verifi-
cation described always terminates after a finlte number of steps.
Moreover, it becomes clear that it 1s sufficient to establish the
identity relations in the boolean algebra for the case where all the

letters appearing in these relations are considered as independent

(boolean) variables. In case of necessity, moreover, any boolean func-
tions can be substituted in place of these variables.

We shall designate the independent variables by the letters x, y,
z (with or without subscripts). We shall also use these same letters
for the writing of the ldentity relations of boolean algebra. We shall
make a verification of the indicated relations with the aid of substi-
tuting into them all the possible sets of values of the variables (let-
ters) appearing in these relations.

As an example let us consider the commutativity relation for mul-

tiplication

- 83 -

Xy = yx. (10)

To convince ourselves of the correctness of this relation 1t is
sufficlent to note that its left and right parts are equal to zero on
the sets (00), (01), (10) and equal to one on the set (11). In view of
the triviality of such a verification we shall not repeat 1t in tlLe .u-
ture and shall limit ourselves to simply writing out the relations we

need, which we shall also term laws or rules.
In addition to the relation (law) of commutativity, for multipli-

cation there also exist the so-called law of asscclativity, expressed

by the equallty
£ (y2) = (xy) 2. (11)

Multiplication satisfles still another law, usually termed the

idempotency law

xXx=X. (12)
As a result of this law, the concepts of power and raising to a

power have no actual importance for the boolean algebra.
The laws of commutativity, assoclatlvity and idempotency extend

also to the disjunction operation. The corresponding relatlions are

written
sVy=yV= (13)
sVwVa=axVyVa (14)
s\ x=x, (15)

Multiplication and disjunction are related with one another by

the first and second distributive laws, which can be expressed by the

relations
xyVa)==xyV xz (16)
xVyz=(xVy V2. (17)
We note that, on the strength of the agreements made on the prior-

ity of the operations, the right side of relation (16) is a simplifica-

- 84 -

e —
T .. - -sharaa . £ L W-] = &

tion (as a result of discarding the redundant parentheses and the mul-
tiplication sign) of the formula (x.y) V(x-2), while the ieft side of rela=-
tion (17) is a simplification of the formula (V (y-2)

For multiplication and disJunction there are valid the so-called

absorption rules, expressed by the followling relations

x\ xy =1x; (18)
x(x\ y)==x (19)

For the negatlion operation the law of double negation 1s of great

_mportance

LA}

=1 ‘ (20)
On the strength of thls law any even number of negations performed in
sequence does not alter the result, while any odd number 1s equivalent
to performing a single negation.

For the various transformations 1n boolean algebra we frequently

need to make use of the so-called de Morgan rules, which comblne to-

gether all three algebralc operatlons,
v (21)
(22)

We point out several more relations which include the constants

O and 1:

sVx=1 (23)
=0 (24)
x.0=0; (25)
x1=x (26)

x\/ 0=y (27)
s\Vi=1 (28)
1=0; (29)
0~1. (30)

Relation (23) is called the law of the excluded middle, relation

- 85 -

(24) is the law of conSradiction. Relations (25) and (28) can be con-

sldered as particular cases of the absorption rules.

Let us consider some corollaries from this system of relation-
ships. From the laws of commutativity and assoclativity for disjunc-
tion and miltiplication, there follows the posslbllity of performing
in any order the actions for finding the values of the product and the
disJunction for any finite number of terms. From thls there follows
the previously noted possibility of writing formulas of the form
xnVx:V... Vx, and %% .--*= without parentheses with no chance of ambigu-
ity as the result of variations of the order of performing the opera-
tions.

We note also that, as follows from relations (25) and (28), the
presence of even a single one in the disjunction of the form xV V...
V{qis sufficient to transform tiie entire disjunction into a one, Just
as the presence of even a single zero cofactor in the product X1Xp oo
Xn transforms this entire product into zero. At the same time, rela-
tions (26) and (27) show that in any disjunction the terms equal to ze-
ro can be dropped, and in any product the terms equal to one can bz
dropped.

On the strength of relation (20), any number of negations per-
formed in sequence reduces elther to a single negation or in general
to the absence of any negations. We shall use X (read as "wavy x") to
designate an expression which can be equal to either of the two expres-
sions x or x. Followlng the rule established above for the verifica-.
tion of identity relations 1n boolean algebra, we shall term the formu-
las representing the same boolean function of the variables appearing

\

in them equal, or equivalent, to one another. Although the equality or

inequality of any two formulas of boolean algebra can in principle be

verified by means of the sorting of all possible combinations of the

TET R, . |, T T T - N ;‘m‘ﬂ
N -

values of the variables appearing in them, with an increase of the num-
ber of variables this method becomes excessively cumbersome and 1s not
sultable in practice. Therefore, one of the primary tasks of boolean
algebra 1s the development of more economical methods of establishing
the various kinds of relations which obtain in this algebra.

For the resolution of this problem we can make use of the previ-
ously derived relations (10)-(30), applying them repeatedly and in var-
ious combinations. For example, two-fold application of relation (12)
makes 1t possible to establish the vallidity of the relatlon xxx = Xx,
multiple application of relations (10) and (13) makes 1t possible to
extend the laws of commutativity for disjunction and the product to an-
y desired number of disjunctlve terms and, correspondingly, cofactors.
Thus, there arises the possibility of proving various relations in
boolean algebra by transforming their left and right sides using rela-
tions (10)-(30). If in doing this we manage to reduce the left and
right sldes of some relation to the same formula, then the validity of
the corresponding relation 1s thereby established.

It 1s not clear a priorl whether such a method makes 1t possilble
to derive all the relations existing 1n boolean algebra. However, in
actuality such derlvation 1s always possible. To establish this fact,
let us define some standard type of formula to which we shall try to
reduce all the formulas of boolean algebra. In the reductlion of a par-
ticular formula A of boolean algebra to the standard form we shall al-
ways fix some finite set M of the boolean variables Xys Xy eeeey Xy
of necessity including all the variables which occur in the formula in
question. We shall term every product of the variables or their nega-

~ ~

tions (i.e., the product of the form Xy XKy eee Xy) an elementary
1 2 k

product i1f each letter 1s encountered in the product no more than one

time.
- 87 -

For example, the products Elxe or'ilx2x3 are elementary, while
the products xiil or xé§2x3 are nonelementary. We shall include among
the elementary products the variables Xy themselves and their nega-
tions'ii, considering them as products conslisting of a single cofactor.
It is convenient also to consider that the constant 1 is an elementary
product=--the product of zero (empty set) cofactors. The number of co-
factors in a product is called its length. The elementary products for
a selected set M of variables can thus have any length from O to n in-
clusive.

The elementary products of maximal length (in the present case,

of length n) are customarily termed constituents of unity for the se-

lected set (M) of variables. It 1s easy to see that every constituent

of unity contains all the variables of the set M (elther in the direct
form or in the form of the negation) precisely one time each, and that
the total number of all such constituents 1s equal to ol,

The disjunction of any number of elementary products which does
\

not conta}n two 1dentlical products is termed the disjunctive normal
form. The disjunctive normal form which consists exclusively of con-.

stituents of unity i1s termed the 1ideal disjunctive ncrmal form.

Just as in the case of the products, in this definition 1t is not
excluded that the disjunction in question can consist of a single term
(disjunction of length 1) and even of an empty set of terms (disjunc-
tion of length O). In the latter case the disJunction 1s.taken equal
to zero by definition. Thus, the formulas 0, x, x\Vxx.! can be consid-
ered as disjunctive normal forms. The first of these formulas conrnsists
of an empty set of terms, the second consists of a single term, the
third consists of two terms, and the fourth conslsts again of a single
term which is the elementary product of zero length.

Replacing in all the definition the disjunctions by products,
- 88 -

products by disjunctions, the (boolean) constant O by the (boolean)
constant 1 and vice versa, we obtaln respectively the definitions of

the elementary disjunctions, constlituents of zero, the conjunctive nor-

mal form and the ideal conJjunctlive normal form.

In boolean algebra, as a result cf the fact that with replacement
of zero by one and one by zero the disJjunction is transformed into con-
Junction and vice versa, there arises a unique duallty of the proper -
ties of disjunction and conjunction (multiplication). Performing such
a replacement, we can automatically for any property (relation) de-
rived herafter obtain its dual property (relation). In particular, to
all the properties of the disjunctive normal forms we can assoclate,
using the indicated duality i;w, the corresponding properties of the
conjunctive normal forms. Since this assoclation is accomplished each
time almost automatically, we shall 1limit ours?lves in the future to
the consideration of only the disjunctive normai forms.

Using relations (10), (11), (13)-(16), (23) and (26), we can
transform any disJjunctive normal form into its equivalent ldeal dis-
Junctive normal form. Let us consider the process of such a transforma-
tion using the example of the disjunctive normal form of three varia-
bles x\gzviyz. which for brevity we shall designate with the single
letter f.

The third term of this formula is a constituent of unity and
therefore does not require any transformations. In order to be a con-
stituent of unity, the second term lacks the multiplier ; (i.e., x or
x), and the first term lacks the factors y and z. On the basis of rela-
tions (23), (26) we can write that f=xyVyHzV2VyzxV)y xyz . Using
the first distributive law (relation (16)) and relations (10), (11),
(13) -(15) we sequentially bring our form to the form f = (xy \ x9)

(z VBV@sz'!}z}VEyz=xszx?/sz-szfy-'szy;V}EZV}yz =xyz\] xy2\/xpz\/xyz\/ xyz\l xyz. . The
- 89 -

¥ Lo

last exprescion in this chain of equalities 1s the deslred ideal dis-
Junctive normal form. We now establish the followling important result.

Theorem 1. With the aid of relations (10)-(30) any formula of

boolean algebra can be reduced to the 1ldeal disjunctive normal form.
Actually, using several times the de Morgan rules (21) and (22),
the double negation law (20), and also the relations (29) and (30), any
formula A(xl, Kps ooe xn) of boolean algebra can be reduced without
difficulty to its equivalent formula B(xl, x2, S = s xn,'il,'ie, s
En), which does not contain any negations other than the negations as-
sociated directly with the letters X1s Xos eeey Xpo It 1s easy to clar-

ify the transformations required in this case from the example

sVyeVyz=(Vy) =% @2 GVI=3 VD Va.
The described technique of sequentlal dropping of the negatlion signs
i1s applicable to any formula of boolean algebra.

The formula B(xl, Xps ooy xn‘il’ 32, ...,'En) is constructed
from the letters (with or sithout negations) shown in its designation
with the use of only the multiplication and dis junctlon operations. Re-
lations (10), (11), (13), (14) and (16) show that expressions, Just ex-
actly as in the usual school algebra course (considering disjunction
as addition), can be transformed to remove all the parentheses and to
group all like terms. After such transformation with subsequent ac-
count for relations (25), (26) and (27) our formula 13 transformed in-
to a disjunction of certaln products of the letters Xqs Xps eoey X
and their negations. With the aild of relations (10), (12), (24) and
(25) all these products can be transformed to their equivalent elemen-
tary products or zeros. Now, using formulas (27) and (15), we reduce
our formula to the ideal disjunctive normal form. An example qf this
was discussed above. Thereby the theorem is completely proved.

It 1s clear that the resulting ldeal disjunctive normal form is
- 90 -

equivalent to the origlinal formula since we used equivalent transforma-
tions 1n each of the steps described above.

We note that all the steps performed are reversiblie, so that wlth
the use of relations (10)-(30) we can also accomplish the reverse con-
version from the constructed ideal disJjunctive normal form to the orig-
inal formula A(xl, Xps ooy xn).

t Theorem 2. For the arbitrary boolean function f of any finite num-

ber of variables Xys KXoy eeey X there can be constructed one and,
with an accuracy to permutatlion of the disjunctive terms and cofactors,
only one 1deal disjunctive form with the same set of varlables to

which it 1s equal.

To each set (al,ae, cesy O) of values of the variables xl, X5

~

cees X there corresponds exactly one constituent of unity xl xg... Xps
which becomes unity on this set. Thils constituent 1s uniquely deflned
by the condition ;ci = x,, 1f o, =1 and by ;‘1 = ?ci if o = 0(L = 1,2,
. eee, n). All the remaining constituents for the given set of valucs of
the variables have zero values. Since in a disjunction the terms which
. are equal to zero can be discarded, then 1t becomes clear that the dis-
Junction g of the constituents of unity corresponding to all thc cets
on which the values of the function f are equal to unity 1s an ideal
disjunctive normal form equal (as a boolean function) to the function
f. It 1s clear also that every variation in the composition of thc con-
stituents of unity occurring in the form g will inevitably alter 1ts
value table and, naturally, will destroy the established equality. Con-
sequently, the form g is deflined uniquely by the function f, Q.E.D.

In view of the indicated uniqueness of the definltion, the form g
is customarily termed the ideal disjunctive normal form of the consid-
ered function f.

Two other important results follow directly from thcorems 1 and 2.

- 91 -

" s e T e —— o
'.l..k('! e

Theorem 3. Any boolean function can be represented in the form of
a formula of boolean algebra.

Theorem 4. With the ald of relations (10)-(30) every formula of

boolean algebra can be represented in any other formula which 1s equiv-
alent to it (i.e., representing the same boolean function).

Actually, as the formula representing any given boolean function
f we can choose 1ts 1deal disjunctive normal form. We can always trans-
form any formula A into its equivalent formula B by means of the ideal
disjunctive normal form g, which, as a result of theorem 2, will be
common for formulas A and B. The chaln of transformations which trans-
forms the formula A into £, and the chain reducing B to g taken in re-
verse ordcr {on the strength of theorem 1 such chains exist) consti-
tute a chailn of transformations which transform the formula A into the
formula B.

We note that not all the relations (10)-(30) written out above
from the proof of theorem 1 are used in the transformations (for exam-
ple, relation (17) i1s not used). Therefore, if desired the system of
relations (10)-(30) can be abbreviated such that theorems 2 and 4 will
be valld as before.

The second remark concerns the fact that the method of transform-
ing the formula A into its equivalent formula B by means of the 1deal
dis junctive normal form g common to both of them was necessary only to
establish the principle of the possibility of conversion from A to B.
In practice this method usually turns out to be too cumbersome, as a
result of which we generally look for more direct ways to convert from
A to B (although, of course, sometimes there may not be a way which 1is
significantly shorter to get from A to B than the "roundabout" method
indicated above).

An important problem which 1s solvable within the framework of

= 92 .

e m— —— -
- " -‘f*v

A'*v 23
» -

A

boolean algebra 1s the problem of the minimization of formulas. The

sense of this problem is the finding of a general technique (algorithm)
which makes 1t possible for any formula of boolean algebra to find 1its

equivalent formula having the minimal possible complexity.

As the criterion of the complexity of a formula it 1s most natur-
al to take the number of operations appearing in this formula, so that,
for example, the complexity of the formula x will be the number 1,
whi]e the complexity of the formula(?vw(ﬂya wlll be the number 5 (two
negations, two disJjunctions and one multiplication). However, follow-
ing the tradition established in the majority of the works on the mini-
mization problem, we shall make use of a different criterion, taking
the complexlity of a formula to be the total number of letters appear-

ing in 1t. Here we are speaking of the number of occurrences of the

letters (including, possibly, identical letters in this number) and
not of the number of different letters 1in the formula. Thus, for in-
stance, in view of the criterion we have defined, the complexity of
the formula (xVy)x\V7 should be considered 4, not 2.

It 1s not difficult to understand that the set M(A) of the differ-
ent formulas of boolean algebra whose complexlty does not exceed the
complexity of any fixed formula A will inevitably be finite. Therefore
the problem formulated above of the minimization of formulas can in
principle be resolved by the sorting of all the formulas of the set
M(A) in the order of increasing complexity until a formula is found
which 1s equivalent to formula A. However, the algorithm based on this
sorting 1s so cumbersome that is is not sultable in practice.

The problem of the construction of more economical algorithms for
the minimization of formulas 1n boolean algebra has not yet been
solved in the general form. Therefore, in practice we limit ourselves,
as a rule, to the problem of finding the minimal formula in a particu-

- 93 -

4~

lar class of formulas and first of all in the class of all dis junctive

normal forms. This problem 1s usually termed the problem of the mini-

mization of the boolean functions, which, of course, 1s not entirely
accurate, since we are not speaking of the minimization of the func-
fion (which remains unchanged in the minimization process) but of the
minimization of the formulas which represent the function (in the pres-
ent case--the disjunctive normal forms).

All the methods of minimization in the class of the disjunctive

normal forms are based on the concept of the prime implicant. The im-

plicant of the boolean function f is the term given to every boolean
bunction g whose reduction to unity is possible only on those sets of
values of the variables on which the function f reduces to unity. We
stipulate that the implicant g covers with 1ts unlties some unities of
the functlon f. From the properties of the disjunction 1t follows that
the disjunction of any (finite) set of implicants &.g&. ...g, of the func-
tion f will again be 1ts implicant. If 1n thls case the unities of the

implicants g g ---.@», considered all together, cover all the unities of

the function f, then this dlsjunction simply colncides with the func-
tion f: &V&:V... Vg =1.

The reverse 1s also clear: any term of the disjunction coinciding
with the functlion f 1s the implicant of this function f 1s the impli-
cant of thils function, and the unitles of all the terms of the indi-
cated disjunctlon all together cover all the unitles of the functlon f.
In particular, every disjunctive normal form g of the boolean function
f can be conslidered as the covering of this function by the set of all
terms of form g, each of which 1s the implicant of the function f. In
this case the elementary products appear in the role of implicants.

We note that with a reduction of the length of the elementary

product (as the rusult of dropping part of the cofactors) the number
- o4 -

of unltles covered by 1t 1s increased. The elementary product of maxi-
mal length (constituent of unity) for n variables reduced to unity on-
ly at one point, while the elementary product of length n — k reduces to
unity at 2k points. Therefore 1t 1s of advantage to cover any gilven
function f by elementary products of the minimal possible length, 1l.e.,
by such elementary products that they themselves are implicants of the
functlon f, but none of thelr lnternal parts are implicants of this

function. Such elementary products are customarily termed prime impli-

cants of the boolean function in question.
The set of all prime implicants of any boolean function f covers
all 1ts ones. Therefore the disjunction g of all prime implicants of

the function f, termed the reduced disjunctive normal form of this

function. However, thils representation will usually not be the most e-
conomical, since some prime 1impllcants can civer ones whicn are alrcad-
y covered by the remalning implicants. Discarding from the form g all

such redundant implicants, we transform 1t into the so-called irreduci-

ble disjunctive normal form of the function f in question.

A boolean function can have, generally speaking, not one but sev-
eral irreduclble disjunctive normal forms. For 1instance, the functlon
of the three variables x, y, 2z, reducing to zero only on the sets (000)
and (111) and equal to unity on all the remaining sets, has five dif-
ferent irreducible disjunctive normal forms. At the same time, we can
show that any two-place boolean function has a single 1lrreducible dis-
Junctive normal form.

It is easy to understant that among the irreduclble disjJunctive
normal forms of any boolean function f there are ineviftably contalned
all its minimal disjunctive normal forms (there may be several of them),
i.e., those disJjunctive normal forms of the functlon f which contain
the smallest number of letters in comparison with all the remaining

- 95 =

e ey i - — - o e~ p——

disjunctive normal forms of this functilon.

We can construct sufficlently economlical al<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>